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1. Introduction

Let S be a separated noetherian scheme of finite Krull dimension, and let
SmS be the category of smooth separated, finite type S-schemes. We denote
by Sp the category of S1-spectra [6] and by SpS1

(SmS) the category of sheaves
of S1-spectra on SmS in the Nisnevich topology [31,32]. Such a sheaf of spec-
tra E is said to be (−1)-connected if, for each integer n<0, its n-th homotopy
sheaf πn(E) vanishes. Finally, we denote by LA1 :SpS1

(SmS)→SpS1
(SmS) the

(stable version of the) A
1-localization functor of [31].

DEFINITION 1. Given S as above, we say that the stable A
1-connec-

tivity property holds over S if the A
1-localization functor LA1 preserves

(−1)-connected S1-spectra.

Our purpose is to address the:

CONJECTURE 2. The stable A
1-connectivity property holds over any regu-

lar base scheme S.

Our main result is that the stable A
1-connectivity propertyholds when

the base scheme S is the spectrum of a field. We will discuss consequences
of that property and also provide some general tools which might hope-
fully help to prove more general cases1 of the stable A

1-connectivity prop-
erty, e.g. when S is essentially smooth over some field. In the sequel, k will
always denote a fixed field. We will thus prove:

THEOREM 3 (cf. 6.1.8). Assume S = Spec(k). The A
1-localization of a

(−1)-connected S1-spectrum is still (−1)-connected.

1J. Ayoup has disproved the previous conjecture in case the dimension of S is ≥2; the
dimension 1 case is still open.
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The A
1-localization functor is described in Section 4 and the proof of

the Theorem 3 appears in Section 6. In Section 4 we develop some general
properties of base change. Sections 1 and 2 are recollections on well known
facts.

In the case k is a perfect field, the theorem can be proven (see [27])
using the homotopy purity theorem of [31]. In the remaining case where
k is not perfect, thus is infinite, we must use Gabber’s presentation lemma
[13, Lemma 3.1] and [9].

The following notion will play an important role in this paper:

DEFINITION 4. A sheaf of abelian groups M in the Nisnevich topology
on SmS is called strictly A

1-invariant if for any X ∈ SmS , the canonical
morphism

H ∗Nis(X;M)→H ∗Nis(X×A
1;M)

is an isomorphism.

We make the following observation which justifies the introduction of
the previous notion:

LEMMA 5 (cf. 6.2.9). Assume that the stable A
1-connectivity property holds

over S. Then:

(1) For any sheaf E of S1-spectra over S and any integer n∈Z, the sheaves

πA
1

n (E) :=πn(LA1(E))

are strictly A
1-invariant.

(2) Let E: (SmS)
op→ Sp, U �→ E(U) be a presheaf of S1-spectra over S

which has the B.G. property for distinguished squares (see 3.1.6 and
3.1.8, or [31]) and the A

1-invariance property: for any U ∈ SmS , the
morphism E(U)→E(U ×A

1) is a stable weak equivalence. Then for any
n ∈ Z, the Nisnevich sheaf Hn(E)= π−n(E) associated to the presheaf
U �→En(U) :=π−n(E(U)) is a strictly A

1-invariant sheaf.

The well-known examples of strictly A
1-invariant sheaves are constant

sheaves, sheaves represented by semi-abelian S-schemes over a general base
scheme. Over k the sheaves of unramified Milnor K-theory [19,35] and
more generally the sheaves of the form X �→ A0(X;M) for each Rost’s
cycle module M, see [35]. When k is perfect, Voevodsky’s homotopy invari-
ant sheaves with transfers [40] are strictly A

1-invariant. These two types of
examples in fact agree by [10,11].
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For instance, for any n∈N, the sheaf Kn on Smk in the Nisnevich topol-
ogy associated to the presheaf X �→Kn(X) of Quillen’s algebraic K-groups
[33] is strictly A

1-invariant. Indeed, following [31,41] the presheaves

X �→Kn(X)

of Quillen’s K-groups can be represented by an S1-spectrum, a T -spectrum
indeed.2 But this fact is well-known, for instance it comes from a Rost’s
cycle module [35] as well.

The following example is however new:

COROLLARY 6. Assume char(k) �=2. Then the sheaf W on Smk in the Nis-
nevich topology associated to the presheaf X �→W(X) of Witt groups [2,20]
is strictly A

1-invariant.

We observe that by [3,4] the sheaves associated to the presheaves X �→
Wi(X) of Balmer Witt groups vanish for i �=0 [4] and are equal to W for i=0 [4].

I. Panin told the author he also has a proof of the corollary which elab-
orates on Voevodsky’s technic from [39], as X �→W(X) has some type of
transfers, though not being a presheaf with transfers in the sense of loc.
cit.. Corollary 6 is used in the computations in [28,29].

Proof. By [16] there is a sheaf of S1-spectra X �→KW(X) on Smk which
represents3 Balmer’s Witt groups.

Remark 7. By the lemma above analogous results hold over a regular
base scheme S on which the stable A

1-connectivity propertyholds; indeed,
Quillen K-groups are still represented by an S1-spectrum. If moreover 2 is
invertible in S, the same holds for the sheaf W associated to Witt groups in
the Nisnevich topology on SmS by [16]; clearly an analogous result holds
also for the sheaves associated to hermitian K-theory.

A general consequence of the stable A
1-connectivity propertyover S is

that the strictly A
1-invariant sheaves form an abelian category AbA1(S), in

fact an abelian sub-category of the category Ab(S) of sheaves of abelian
groups on SmS for which the functor AbA1(S)⊂Ab(S) is exact, see Lemma
6.2.13 below. In a very precise sense, these objects are the analogues in the
motivic algebraic topology for smooth S-schemes of the “discrete” abelian
groups in classical algebraic topology. Here is what we mean.

First observe that if SmS denotes the category of differentiable mani-
folds endowed with the classical topology, the category of strictly R-invariant

2See also [16].
3At least for X affine.
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sheaves is just equivalent to the category of abelian groups. A classical4 S1-
spectrum E admits a Postnikov tower

{P n(E)}n∈Z=
{ · · · → P n(E)→ ·· · → P−1(E)→ ·· ·}

for which the fiber of P n(E)→ P n−1(E) is the Eilenberg-MacLane spec-
trum H(πn(E)) associated to the n-th stable homotopy group πn(E) of E.

In the world of A
1-homotopy theory over S [25,31,41], we deduce, when

the stable A
1-connectivity propertyholds over S, that any sheaf of S1-spec-

tra E on SmS (in the Nisnevich topology) admits a canonical Postnikov
tower as above in which the fiber of P n(E)→ P n−1(E) is the Eilenberg–
MacLane spectrum H(πA

1

n (E)) associated to the n-th stable A
1-homotopy

sheaf πA
1

n (E)=πn(LA1(E)) of E, which is a strictly A
1-invariant sheaf. In

other words, there is a t-structure [5] on the stable A
1-homotopy category

of S1-spectra whose heart is AbA1(S).
That (potential) t-structure is called the homotopy t-structure. It is the

analogue in the stable A
1-homotopy theory of S1-spectra of Voevodsky’s

homotopy t-structure for the triangulated category DMeff (k) over a perfect
field k [40].

Remark 8. An obvious abelian variant of our Conjecture 2 and Theorem
3 is obtained by working with chain complexes of sheaves of abelian groups
on SmS instead of sheaves of S1-spectra. Recall that Ab(S) denotes the abe-
lian category of sheaves of abelian groups on (SmS)Nis . Let us denote by
D(Ab(S)) its derived category. One defines the notion of A

1-local chain com-
plex C∗ and A

1-quasi isomorphisms in the same way as the notions of A
1-local

S1-spectra and stable A
1-weak equivalences, see Definition 4.1.1. The local-

ization of D(Ab(S)) by the class of A
1-quasi isomorphisms is denoted by

DA1(Ab(S)) and will be called the A
1-derived category of Ab(S). One can

constructs in the same way the A
1-localization functor

LA1 :D(Ab(S))→D(Ab(S))

which as usual identifies DA1(Ab(S)) to the full subcategory consisting of
A

1-local complexes.
We then conjecture that this functor preserves non-negative chain

complexes over any base S. In fact one can prove that this is implied by
Conjecture 2. Our proof of Theorem 3 can be adapted to get the abelian
version: the A

1-localization functor over a base field

LA1 :D(Ab(k))→D(Ab(k))

4cf [1,6].
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does preserve non-negative chain complexes. We thus get an homotopy
t-structure on DA1(Ab(k)) in that case.

All this is compatible with the case of S1-spectra through the derived
functor of abelianization5

SHS1
(k)→D(Ab(k))

Remark 9. An other variant in the spirit of the preceding remark is
obtained as follows. Let us denote by Abtr(S) the category of sheaves with
transfers in the Nisnevich topology over SmS in the sense of Voevodsky
[40]. In the case of a general base S one using the group of finite corre-
spondences defined in [38]. One proves as in [40] that Abtr(S) is an abelian
category. Let us denote by DMeff (S)⊂D(Abtr(S)) the full subcategory con-
sisting of A

1-local chain complexes and by

LA1 :D(Abtr(S))→DMeff (S)

the left adjoint to this inclusion.
Then the same technics from our proof of Theorem 3 proves the

A
1-connectivity property holds for this functor when S = Spec(k)). When k

is perfect, Voevodsky showed [40] that the functor LA1 is equal to the Suslin-
Voevodsky functor C∗. This proves the A

1-connectivity property in that case.
In case k is no longer perfect, the A

1-localization functor is more mysterious
and the A

1-connectivity property in that case is new. We hope, as in conjecture
2, that this property always holds. Of course that picture fits with the one of the
preceding remark through the derived functor of “adding transfers”:

D(Ab(S))→D(Abtr(S))

In case of a base field, the heart of the associated homotopy t-struc-
ture is the category of strictly A

1-invariant sheaves with transfers. For k

perfect, this is exactly Voevodsky’s abelian category of A
1-invariant sheaves

with transfers by the results of [39].
One can also deduce from our theorem that the functor

DMeff
gm(k)→DMeff (k)

is a full embedding. This is done in the same way as Voevodsky’s proof in
the case k is perfect [40]. We don’t know whether Voevodsky’s cancellation
theorem [42] holds in that case.

On the way we will prove a refined form of Theorem 2:

5Which is induced by mapping a sheaf of pointed sets to the free sheaf of abelian
groups with the relation base point=0.



6 F. MOREL

THEOREM 10 (cf. 6.4.1). Assume the stable A
1-connectivity propertyholds

over S. Let X be a smooth S-scheme and U ⊂ X be an open subscheme
such that the complementary closed immersion Z→X is everywhere of co-
dimension �d and equidimensional over S (in the sense of [38]). Let X/U

denote the obvious quotient sheaf of pointed sets in the Nisnevich topology
on SmS and let (X/U) denote its suspension S1-spectrum. Then the A

1-local-
ization LA1(X/U) of the S1-spectrum (X/U) is a (d−1)-connected sheaf of
S1-spectra on SmS .

Observe that the case U=∅ and d=0 is just Theorem 3. If Z is assumed
to be smooth over S we know from the homotopy purity of [31] that X/U

is A
1-weakly equivalent to T h(νi), the Thom space of the normal bundle

of the closed immersion i : Z→X; this easily implies the Theorem in that
case.

Assuming the stable A
1-connectivity propertyholds over S, an easy

reformulation of the previous theorem (see Corollary 6.4.6) is the follow-
ing. For any smooth S-scheme X and any open subscheme U⊂X such that
the complementary closed immersion Z→X is everywhere of codimension
� d and such that Z→ S is a universally equidimensional morphism, and
for any strictly A

1-invariant sheaf M on SmS the morphism

Hn
Nis(X;M)→Hn

Nis(U ;M)

is an isomorphism for n�d−2 and a monomorphism for n=d−1.
This property is wrong for a general M if one removes the hypothesis

that Z is equidimensional. For instance, given a strictly A
1-invariant sheaf

M and U ⊂X an open dense subscheme, then in general the restriction
morphism M(X)→M(U) is not injective.

Pure sheaves. We will then call pure a sheaf on SmS which satisfies the
previous property for any closed subscheme Z of X of codimension � d

and for which Zariski cohomology agrees with Nisnevich cohomology (see
Definition 6.4.9 below).

For instance, if S is normal, any semi-abelian S-scheme A→ S defines
a strictly A

1-invariant sheaf which is pure. This follows from the standard
properties of abelian schemes [12, Lemma 1] which imply they are flasque
sheaves and A

1-invariant. Over a general regular base S, other examples
of pure sheaves should be the sheaves associated to the presheaves X �→
H ∗et (X;M) of étale cohomology with coefficients in a locally constant con-
structible torsion sheaf M on S of torsion prime to each characteristic of
the residue fields of S. But this is not yet known unless S itself is smooth
over some base field for instance. It is hard to give other examples of pure
sheaves over a general base.

By Lemma 6.4.11 below, over a base field any strictly A
1-invariant sheaf

is pure. However over a general base S, it is not true that a strictly
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A
1-invariant sheaf on SmS is automatically pure. Take a closed immersion

i :Z⊂S with Z a non-empty closed subscheme of codimension d >0. Then
the (flasque) sheaf i∗Z is a strictly A

1-invariant sheaf on SmS but it is not
pure.

We will make in 6.4.12 below a conjecture which implies in particular
that for any smooth projective S-scheme X and any integer n the A

1-
homotopy sheaf πA

1

n (X+) is pure. Of course, the assumption that X is pro-
jective (and smooth) over S is essential.

Gersten conjecture. By 6.4.15 a strictly A
1-invariant sheaf which is also

pure automatically satisfies the Gersten conjecture for all the localizations
of points in smooth S-schemes. Thus our Conjectures over a regular base
scheme S, together with the representability of algebraic K-theory by the
Grassmanian [31] imply Gersten’s conjecture for K-groups for all regu-
lar local rings. In the same spirit some conjecture of the author predicts
that Balmer’s Witt groups are represented by a spectrum constructed out
of smooth projective S-schemes (orthogonal Grassmanian) so that Gersten
conjecture for Witt groups would follow from all these. Finally some ver-
sion of unramified Milnor’s K-theory sheaves [35] over a general regular
base scheme S should satisfy Gersten’s conjecture as well as they should
naturally appear as stable A

1-homotopy sheaves of some explicit algebraic
Thom spaces [29].

A
1-homology. For X ∈ SmS let Z[X] denote the sheaf of abelian groups

freely generated by X which we consider as an object in DA1(Ab(S)); this
is the abelianization of the spectrum (X+) in the sense of Remark 8. For
any integer n∈Z we define the n-th A

1-homology sheaf 6
H

A
1

n (X) of X as
to be the n-th homology sheaf of the A

1-localization of Z[X]. As the chain
complex Z[X] is obviously (−1)-connected, if stable A

1-connectivity prop-
ertyholds over S, one has H

A
1

n (X)= 0 for n< 0. In that case, one can eas-
ily deduce that (if the stable A

1-connectivity propertyholds over S) for any
X∈SmS the canonical Hurewicz morphism (induced by abelianization)

πA
1

0 (X+)→H
A

1

0 (X)

is an isomorphism. This result will be strengthened and generalized in [29].
We mention now the following quite natural “topological” conjecture:

CONJECTURE 11. Assume S is regular.

(1) For any X∈SmS the sheaves H
A

1

n (X) vanish for n<0.
(2) For any X ∈ SmS of relative dimension � d, the homology sheaves

H
A

1

n (X) vanish for n>2d, and in fact for n>d if X is affine over S.

6As opposed to Suslin–Voevodsky singular homology sheaves H
S
n(X).
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The part (1) of the Conjecture is in fact already implied by Conjecture 2.
The part (2) of the conjecture for all the powers G

d
m of the multipli-

cative group over our field k, will be shown in [30] to imply Beilinson–
Soulé’s vanishing conjecture for all fields extension of k. More generally,
that conjecture implies the analogous vanishing for (rational) Suslin singu-
lar homology groups.

Our A
1-connectivity results should be thus considered as analogues of

the vanishing

πS
n (X+)=0 if n<0

of negative stable homotopy groups of C.W.-complexes. The first type
of such a vanishing result is due to Voevodsky [41]. In [29] we will be
concerned with the next step: the computation of each of the sheaves
πA

1

0 ((Gm)∧n)=H
A

1

0 ((Gm)∧n) which is the analogue of the computation

πS
0 (S0)=Z

In that spirit Conjecture 11 should be thought of as the analogue of the
fact that the singular homology groups Hn(X;Z) of a differentiable mani-
fold of dimension d vanish for n>d.

The strictly A
1-invariant sheaves will play a central role in our compu-

tations, and the study of their basic structures and properties seems to us
to be one of the fundamental problems of the subject; this paper and it
sequels [29,30] could be considered as a first small attempt towards the
dream of realizing Serre’s program [36] in the motivic homotopy theory,
which also predicts among other things:

CONJECTURE 12. Assume S is regular of finite type over Z. For any inte-
ger n∈N, any X∈SmS the n-th A

1-homology group H
A

1

n (X)(S) and the n-th
stable A

1-homotopy group πA
1

n (X+)(S) are finite type abelian groups.

This conjecture seems rather unreachable up to now. We observe that
if moreover the stable A

1-connectivity propertyholds over S, by the results
of this paper and the representability of algebraic K-theory [31], it implies
that Quillen’s K-groups are finite type for a regular S of finite type over Z.
It also implies the same results for those S for algebraic cobordism groups,7

and motivic cohomology groups.8

Conventions, notations. Everywhere in this paper, S will denote a sepa-
rated noetherian scheme of finite Krull dimension, SchS the category of

7Defined over any base using the Thom spectrum MG� [41].
8For the ones defined over any base by M. Hopkins and the author by “killing” the

positive elements of the Lazard in the algebraic cobordism spectrum.
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separated S-schemes, and SmS ⊂ SchS the full subcategory consisting of
finite type smooth S-schemes. We will simply denote by SmS the category
SmS when no confusion can arise.

We will let Shv(SmS) (resp. Shv•(SmS), Ab(SmS)) denote the category
of sheaves of sets (resp. of pointed sets, of abelian groups) on SmS in
the Nisnevich topology [27,31,32]. For any X ∈ SmS the presheaf Y �→
HomSmS

(Y,X) is a sheaf of sets in the Nisnevich topology, which we call
the sheaf represented by X and which we still denote by the letter X. The
induced functor

SmS→Shv(SmS), X �→X

is a fully faithful embedding.
By a point x on SmS , we shall mean a point x ∈X∈SmS . Such a point

defines a fiber functor px : Shv(SmS)→ Sets,F �→ Fx := colimV→XF(V ),
where the V→X run over the category of Nisnevich neighborhoods of x,
that are étale morphisms f :V→X such that f −1(x) has only one element
with the same residue field of x.

2. Recollection on Simplicial Homotopy Theory

In this section, for the comfort of the reader, we give a brief review of basic
notions concerning simplicial sheaves, sheaves of S1-spectra and the corre-
sponding homotopical algebra.

2.1. SIMPLICIAL SHEAVES

We will assume the reader is familiar with the notion of simplicial objects
in a category; see for instance [15,24]. We will also assume the reader is
familiar with some of the basic notions of simplicial homotopy theory. We
will nevertheless provide a short recollection.

We let S denote the category of simplicial sets, by �opShv(SmS) that
of simplicial sheaves of sets (on SmS in the Nisnevich topology) and by
�opShv•(SmS) that of pointed objects in �opShv(SmS), which will be called
pointed simplicial sheaves of sets.

For instance, given any set E we still denote by E the sheaf associ-
ated to the presheaf U �→ E which we call the constant sheaf associated
to E. Given any simplicial set K, the associated simplicial sheaf of sets
on SmS is still denoted by K. We thus get a fully faithful embedding
S→�opShv(SmS),K �→K (if S is assumed to be integral). We observe that
this functor commutes to arbitrary small colimits.

For each n∈N, we denote by �n ∈S the standard simplicial n-simplex.
For instance the 0-simplex �0 is also denoted by ∗ and called “the” point
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as it is the final object in S. We let S1 denote the quotient in S of �1 by
its boundary ∂�1⊂�1, i.e. the disjoint union of its two 0-simplices.

Given two pointed simplicial sheaves X and Y , we will denote by X ∨
Y = X × {∗} ∪ {∗} × Y the wedge of X and Y . The wedge is naturally
embedded into the product X ×Y and the quotient pointed simplicial sheaf
of sets (X × Y)/(X ∨ Y) is called the smash-product of X and Y and is
denoted by X ∧Y .

For a fixed Y ∈�opShv(SmS), the functor �opShv(SmS)→�opShv(SmS),
X �→ X × Y admits a right adjoint Z �→Hom(Y,Z) and if moreover Y
is pointed then the functor �opShv•(SmS)→�opShv•(SmS), X �→ X ∧ Y
admits a right adjoint denoted by Z �→Hom•(Y,Z). The pointed simpli-
cial sheaf of sets Hom•(Y,Z) is just the fiber over the base point of Z of
the evaluation at the base point (of Y) morphism Hom(Y,Z)→Z.

The cone of X is the pointed simplicial sheaf C(X ) :=X ∧�1, where �1

is pointed by its 0-vertex d1 : ∗=�0→�1. The other 0-vertex d0 : ∗→�1

induces a monomorphism X→C(X ). The quotient C(X )/X is isomorphic
to the smash-product X ∧ S1 which is called the suspension of X and is
denoted by �(X ). The suspension functor admits as right adjoint the sim-
plicial loops space functor

�1 :�opShv•(SmS)→�opShv•(SmS), Z �→�1(Z) :=Hom•(S
1,Z)

For f :X → Y a morphism of pointed simplicial sheaves we let C(f )

denote the amalgamate sum in Shv•(SmS) of the diagram:

X → C(X )

↓
Y

and call it the cone of f . For instance the cone of the morphism X→∗ is
by definition the suspension of X .

For any X ∈�opShv(SmS) the equalizer of the diagram in Shv(SmS):

X1
→→X0

is denoted by π0(X ). It is the sheaf associated to the presheaf U �→π0(X (U)).
If we assume moreover that X ∈�opShv•(SmS), then for any integer

n�1, we shall denote by πn(X ) the sheaf of groups (abelian groups if
n � 2) associated to the presheaf U �→πn(X (U)). For an integer n∈N we
say that X is n-connected if and only if πi(X ) is the trivial sheaf for all
i ∈{0, . . . , n}.

Let x be a point of SmS and let px :Shv(SmS)→Sets,F �→Fx denote its
associated fiber functor. This functor extends to a functor

px :�opShv(SmS)→S, X �→Xx



THE STABLE A
1-CONNECTIVITY THEOREMS 11

If X is a pointed simplicial sheaf, then clearly one has a canonical isomor-
phism of groups πn(X )x∼=πn(Xx).

DEFINITION 2.1.1. A morphism of simplicial sheaves f :X→Y is called
a weak equivalence if and only if for any point x of the site SmS the fiber

fx :Xx→Yx

is a weak equivalence of simplicial sets (in the sense of [34]).
The homotopy category of simplicial sheaves on SmS is the category

denoted by Hs(SmS) and obtained from �opShv(SmS) by inverting the
weak equivalences.

We may define the notion of weak equivalence between pointed simpli-
cial sheaves to be a morphism f :X →Y in �opShv•(SmS) whose under-
lying morphism of simplicial sheaves is a weak equivalence. The pointed
homotopy category of pointed simplicial sheaves of sets on SmS is then
the category denoted by Hs,•(SmS) and obtained from �opShv•(SmS) by
inverting the weak equivalences.

Remark 2.1.2. In [21], Jardine showed that there is a natural simplicial
model category structure on both �opShv(SmS) and �opShv•(SmS) whose
respective homotopy categories are Hs(SmS) and Hs,•(SmS). See Appendix A
for a quick recollection on simplicial model category structures.

2.2. S1-SPECTRA

DEFINITION 2.2.1. An S1-spectrum E in SmS is a collection

{En,σn}n∈N
consisting, for each integer n � 0, of a pointed simplicial sheaf En and
a morphism σn:�(En) = En ∧ S1 → En+1 of pointed simplicial sheaves.
Morphisms of S1-spectra are collections of morphisms of pointed simplicial
sheaves which satisfy the obvious conditions. The category of S1-spectra in
SmS is denoted by SpS1

(SmS).

EXAMPLE 2.2.2. For any pointed simplicial sheaf X , it suspension spec-
trum �∞(X ) has n-th term X ∧Sn (where Sn :=S1∧· · ·∧S1) and identities
as structure morphisms. This defines the suspension functor:

�∞:Shv•(SmS)→SpS1
(SmS)

When X :=∗ is the point, we simply set S0 :=�∞(∗+) and call it the sphere
S1-spectrum, or simply the sphere spectrum.
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Very often, when no confusion can arise, we will simply denote by (X )

the suspension spectrum of a pointed simplicial sheaf X .

EXAMPLE 2.2.3. Let E be an S1-spectrum and X be a pointed simplicial
sheaf. One defines the smash-product E ∧ (X ) as the S1-spectrum whose
n-th term is En∧X and with the obvious structure morphisms. This func-
tor induces a functor

SpS1
(SmS)×�opShv•(SmS)→SpS1

(SmS), (E,X ) �→E∧ (X )

Observe the formula S0 ∧ (X ) = (X ). For a given X , the above functor
admits a right adjoint denoted by F �→Hom•(X ,F ), given in degree n by
the pointed internal function object Hom•(X ,Fn).

EXAMPLE 2.2.4. The definition of S1-spectra in SmS clearly follows the
classical notion of S1-spectra [1,6]: such an S1-spectrum E is a collection
{En,σn}n∈N consisting, for each integer n � 0, of a pointed simplicial set
En and a morphism σn:�(En)=En∧S1→En+1 of pointed simplicial sets.
Thus, taking the associated (constant) sheaf defines a functor

→SpS1
(SmS),E �→E

from the category of S1-spectra to that of S1-spectra in SmS .
We observe that for any S1-spectrum E in SmS and any X ∈ SmS ,

the sections on X, E(X), form an S1-spectrum in. We can thus consider
S1-spectra in Shv(SmS) as sheaves on SmS of S1-spectra.

In much the same way, given any point x of SmS , the fiber Ex

of an S1-spectrum E at x is an S1-spectrum in. The fiber functor
px :�opShv(SmS)→S thus extends to a functor px :SpS1

(SmS)→.

DEFINITION 2.2.5. For any S1-spectrum E, and any n ∈ Z, the sheaf
associated to the presheaf

X �→πn(E(X))

is denoted πn(E) and is called the n-th homotopy sheaf of E.

Clearly, for any point x of SmS , the fiber πn(E)x at x of πn(E) is canon-
ically isomorphic to the n-homotopy group of the S1-spectrum Ex .

The n-th homotopy sheaf of E can also be identified to the colimit in
the category Ab(SmS) of sheaves of abelian groups (for r large enough)

πn(E)∼= colimr>>0πn+r (Er)

of the diagram whose morphisms πn+r (Er)→πn+r+1(Er+1) are induced in
the obvious way by the structure morphisms σr :Er ∧S1→Er+1.
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DEFINITION 2.2.6. A morphism of S1-spectra f :E→F is called a stable
weak equivalence if it induces an isomorphism of sheaves

πn(E)∼=πn(F )

for all integer n∈Z.

As a consequence of our previous comments, a morphism f :E→F of
S1-spectra is a stable weak equivalence if and only if for any point x of
SmS , the fiber at x

fx :Ex→Fx

is a stable weak equivalence in.
An S1-spectrum E whose homotopy groups are all zero is called trivial.

This means that the morphism E→∗ is a stable weak equivalence.

2.3. STABLE HOMOTOPY THEORY OF S1-SPECTRA

DEFINITION 2.3.1. The stable homotopy category of S1-spectra on SmS

is the category denoted by SHS1

s (SmS) and obtained from SpS1
(SmS) by

inverting the stable weak equivalences. Given S1-spectra E and F the set of
morphisms in SHS1

s (SmS) between E and F is simply denoted by [E,F ].

Remark 2.3.2. The functor → SpS1
(SmS) (see 2.2.4) clearly maps stable

weak equivalences in the usual sense to stable weak equivalences, so that it
induces a functor

SH→SHS1

s (SmS)

where SH denotes the usual stable homotopy category of [6]. This follows
from the obvious fact that the homotopy sheaves associated to E∈ are the
constant sheaves associated to the homotopy groups of E.

By the very definition, for any point x of SmS , the fiber functor at x

induces a functor

px :SHS1

s (SmS)→SH,E �→Ex

A brief recollection on the homotopical algebra of spectra [6,22]. One
can describe these stable homotopy categories using the “homotopical alge-
bra”of Quillen; see [34] and also Appendix A for a more detailed account.
There is a closed simplicial model category structure on SpS1

(SmS) whose
associated homotopy category is SHS1

s (SmS). This is proven in [22]. We will
only sketch here the concrete consequences concerning the computations in
SHS1

s (SmS).
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Given S1-spectra E and F , a homotopy between two morphisms f ,
g:E→ F is a morphism of S1-spectra H :E ∧ (�1

+)→ F such that H ◦
(IdE ∧ (d1

+))=f and H ◦ (IdE ∧ (d0
+))=g. We denote by π(E,F ) the quo-

tient of Hom
SpS1

(SmS)
(E,F ) by the equivalence relation generated by ho-

motopies. This is called the set of homotopy classes of morphisms from
E to F . We observe that the projection E ∧ (�1

+)→E is a stable weak
equivalence and thus homotopic morphisms induce the same morphism in
SHS1

s (SmS), so that we get a canonical induced map

π(E,F )→ [E,F ]

A homotopy equivalence f :E→F is a morphism for which there is a mor-
phism g:F→E such that f ◦g is homotopic to IdF and g ◦f is homotopic
to IdE.

A morphism i:A→ B of S1-spectra is called a cofibration if for each
n�0 the morphism of pointed simplicial sheaves An�An−1∧S1 (Bn−1∧S1)→
Bn is a monomorphism of simplicial sheaves, and call i a trivial cofibration
if moreover it is a stable weak equivalence. A cofibrant S1-spectrum E is
an S1-spectrum for which the canonical morphism from the trivial S1-spec-
trum ∗ :=�∞(∗) to E is a cofibration. This exactly means that the struc-
ture morphisms σn are all monomorphisms of pointed simplicial sheaves.
For instance, any suspension spectrum (X ) of a pointed simplicial sheaf is
cofibrant.

A morphism f :E→B of S1-spectra is called a fibration if and only if
it has the right lifting property9 with respect to any trivial cofibration. An
S1-spectrum E is called fibrant if the morphism E→∗ is a fibration, i.e.
if for any trivial cofibration i:A→B and any morphism f :A→E there is
a morphism g:B→E such that g ◦ i= f . A trivial fibration is a fibration
f :E→B which is also a stable weak equivalence. We observe that a trivial
cofibration F1→F2 between fibrant S1-spectra has to be a simplicial ho-
motopy equivalence and that a trivial fibration between cofibrant S1-spec-
tra is a homotopy equivalence (use [34]).

The technics from [22] can be easily adapted from presheaves to sheaves
to yield:

LEMMA 2.3.3 ([22]). There exist functors SpS1
(SmS)→SpS1

(SmS),E �→Ec

and SpS1
(SmS)→SpS1

(SmS),F �→Ff as well as natural transformations (in
E and F)

Ec→E

and

F→Ff

9See Definition A.1.1.
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such that for any E, the spectrum Ec is cofibrant and the morphism Ec→E

is a trivial fibration and such that for any F , the S1-spectrum Ff is fibrant
and the morphism F→Ff is a trivial cofibration.

We shall call functors and a natural transformations as in the previ-
ous Lemma a functorial cofibrant resolution and functorial fibrant resolution
respectively. We will always assume that such functorial (co-)fibrant resolu-
tions have been chosen in the sequel.

We can then state Quillen’s principle of homotopical algebra (see [34]
and Appendix A) in the category of S1-spectra over SmS :

LEMMA 2.3.4 ([34]). Given a cofibrant S1-spectrum E and a fibrant
S1-spectrum F the map

π(E,F )→ [E,F ]

is a bijection.

Given any pair (E,F ) of S1-spectra we can now “compute” the set
[E,F ] of morphisms in SHS1

s (SmS) as follows. Since the cofibrant resolu-
tion Ec→E is a stable weak equivalence, the induced map [E,F ]→ [Ec,F ]
is a bijection. In the same way, the map [Ec,F ]→ [Ec,Ff ] is also a bijec-
tion. But now by the previous lemma

π(Ec,Ff )∼= [Ec,Ff ]

This is the principle of the homotopical algebra of Quillen [34]: to compute
[E,F ]s replace E by some cofibrant resolution, replace F by a fibrant res-
olution and compute the set of homotopy classes between the resolutions.

Remark 2.3.5. The technics of [22] give a model category structure on
SpS1

(SmS) (see Appendix A for that notion), but we won’t use it in the
sequel. The fibrations are not easy to describe (see [6] for instance or [22]).
Call a local fibration a morphism whose fibers at each point of SmS are
fibrations in the sense of [6]. Any fibration is a local fibration but the con-
verse is not true; there are local fibrations which are not fibrations. At least
we can “describe” fibrant S1-spectra, i.e. those E for which the morphism
E→∗ is a fibration.

Call a morphism X→Y of simplicial sheaves a trivial cofibration if it is
both a monomorphism and a weak equivalence. Call a simplicial sheaf K
fibrant if for any trivial cofibration A→B, any morphism A→K can be
extended to B. One then has the following:
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LEMMA 2.3.6. An S1-spectrum E is fibrant if and only if for each n�0 the
pointed simplicial sheaf En is fibrant and the adjoint morphism to σn:

σ̃n :En→�1(En+1)=Hom•(S
1,En+1)

is a weak equivalence of pointed simplicial sheaves.

Remark 2.3.7. On can also construct the derived category D(Ab(SmS))

using exactly the same procedure. The principle of homotopical algebra
then becomes the principle of “homological algebra”, and indeed the fi-
brant resolution for bounded above complexes correspond to injective res-
olutions in the usual sense.

The functor

SpS1
(SmS)×�opShv•(SmS)→SpS1

(SmS),E �→E∧ (X )

preserves stable weak equivalences: this follows easily from the correspond-
ing fact in (see [6]) as well as Lemma 2.2.5. We thus get a functor

SHS1

s (SmS)×Hs,•(SmS)→SHS1

s (SmS), (E,X ) �→E∧ (X )

Here is an application of the homotopical algebra.

LEMMA 2.3.8. Let X be a pointed simplicial sheaf. Then the functor

SHS1

s (SmS)→SHS1

s (SmS),E �→E∧X

admits as right adjoint the right derived functor10 of the functor F �→
Hom•(X ,F ) which we denote RHom•(X ,−), and which maps an S1-spec-
trum F to:

RHom•(X ,F ) :=Hom•(X ,Ff )

In the sequel, when no confusion can arise, we shall simply write F (X )

instead of RHom•(X ,F ).

Proof. We observe that for any S1-spectrum E and any S1-spectrum F

we have by adjunction a natural bijection (in E and F )

π(E∧X ,F )∼=π(E,Hom•(X ,F ))

If E is assumed cofibrant and F fibrant, then E∧X is also cofibrant and
Hom•(X ,F ) is fibrant (easily checked). But then the left hand side can

10In the sense of Quillen [34].
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be identified to [E ∧ X ,F ] and the right hand side to [E,Hom•(X ,F )].
This proves that if f : F → F ′ is a stable weak equivalence between fi-
brant S1-spectra, then Hom•(X ,F )→Hom•(X ,F ′) is an isomorphism in
SHS1

s (SmS), which is thus a weak equivalence. So that F �→Hom•(X ,Ff )

indeed induces a functor RHom•(X ,−) :SHS1

s (SmS)→SHS1

s (SmS) which is
clearly right adjoint to SHS1

s (SmS)→SHS1

s (SmS), E �→E∧X by the previ-
ous computation.

3. The Standard t-Structure for S1-Spectra

3.1. SUSPENSION AND THE TRIANGULATED STRUCTURE

Our aim is to outline a proof of the following:

PROPOSITION 3.1.1. The stable homotopy category SHS1

s (SmS) of
S1-spectra in SmS admits a canonical structure of triangulated category in
which:

(1) the shift functor E �→E[1] is the functor induced by the smash-product
by S1, E �→E∧ (S1);

(2) an exact triangle is isomorphic to a triangle of the form

E
f→F→C(f )→E[1]

where for a morphism of S1-spectra f :E→F the spectrum C(f ) denotes
the cone of f , i.e., the n-th term C(f )n is precisely the cone of the mor-
phism fn:En→Fn of pointed simplicial sheaves.

(3) As a triangulated category, SHS1

s (SmS) is generated by the objects (U+),
U ∈ SmS: this means that a S1-spectrum E is trivial if and only if for
each integer n∈Z and any U ∈SmS , [(U+)[n],E]=0;

(4) The objects (U+), U ∈ SmS are “small” in the sense that for any
right filtering small category I and any functor E•:I→ SpS1

(SmS), the
canonical homomorphism

colimi∈I [(U+),Ei ]→ [(U+), colimIE•]

is an isomorphism.

We first prove:

LEMMA 3.1.2. The suspension functor

SHS1

s (SmS)→SHS1

s (SmS),E �→E∧ (S1)



18 F. MOREL

and its right adjoint

SHS1

s (SmS)→SHS1

s (SmS),E �→E(S1)

are equivalences of categories, inverse to each other.
Proof. Indeed, it suffices to prove that for E∈SpS1

(SmS) the two natural
morphisms (coming from the adjunction)

E→ (E∧S1)(S
1) and E(S1)∧S1→E

are isomorphisms. We may assume that E is fibrant and the statement fol-
lows by the corresponding well-known statement in SH, by Lemma 2.3.6
and by the obvious fact that for any point x of SmS

(E(S1))x∼= (Ex)
(S1)

which is easy to check.

For any integer n ∈ Z we will denote by E �→ E[n], SHS1

s (SmS)→
SHS1

s (SmS) the equivalence of categories E �→E∧ ((S1)∧n) for n�0 and the
functor E �→E(S1)∧−n

for n�0.

Remark 3.1.3. For U ∈ SmS and n > 0, one can find a nice S1-spectrum
which is isomorphic to (U+)[−n]; just take as i-term the point ∗ for i <n

and (U+)∧ (S1)∧i−n for i �n, with the obvious structure morphisms.

LEMMA 3.1.4. For any S1-spectrum E, and any n∈Z, the sheaf associated
to the presheaf

X �→ [(X+)[n],E]

is canonically isomorphic to πn(E).
Proof. One may easily reduce to the case n= 0 and E fibrant. Then

as (X+) is a cofibrant S1-spectrum one gets that [(X+)[n],E]∼=π((X+),E)

which is easily seen to be the same as the set π0(E0(X)). One then con-
cludes using the well-known fact that for any simplicial sheaf Y , the sheaf
π0(Y) is the one associated to the presheaf X �→π0(Y(X)).

We then show that the category SHS1

s (SmS) is additive. This follows
indeed from the previous lemma. Let H• denote the homotopy category of
pointed simplicial sets. We know that the pointed simplicial circle S1∈H•
has a canonical co-group structure S1→ S1 ∨ S1 (corresponding to the
fact that the set of morphisms from S1 to K in H• is in one-to-one
correspondence with the fundamental group of K). But then the functor
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SHS1

s (SmS)×H• → SHS1

s (SmS), (E,K) �→ E ∧K induces a canonical co-
group structure in SHS1

s (SmS) on E∧S1 for each E, given by the morphism

E∧ (S1)→E∧ (S1∨S1)∼= (E∧ (S1))∨ (E∧ (S1))

By Lemma 3.1.2, we can “cancel” S1 and we thus get a canonical group
structure on any E, which gives the additivity. One can then deduce that
finite sums in SHS1

s (SmS) are also finite products in SHS1

s (SmS). But in fact
one could have proven directly that for two S1-spectra E and F the mor-
phism of the wedge E∨F to the categorical product E×F is an isomor-
phism because it is so in SH and using the formulas for any point x of
(SmS,T )

Ex ∨Fx
∼= (E∨F)x and (E×F)x∼=Ex×Fx

Now the fact that the category SHS1

s (SmS) gets a canonical triangulated
category structure as in the proposition is “classical”. We just mention the
proof of:

LEMMA 3.1.5. Given any morphism f :E→F of S1-spectra and an S1-spec-
trum G, the cofibration sequence

· · ·→E→F→Cone(f )→E∧S1=E[1]→F [1]→ . . .

induces long exact sequences of abelian groups

· · ·← [E,G]← [F,G]← [C(f ),G]← [E,G[−1]]← . . .

and

. . .→ [G,E]→ [G,F ]→ [G,C(f )]→ [G, [1]]→ . . .

In particular, one has a long exact sequence of homotopy sheaves

· · ·→πn(E)→πn(F )→πn(C(f ))→πn−1(E)→ . . .

Proof. The first long exact sequence is the long homotopy exact sequence
of the cofibration sequence as defined by Quillen [34]. The second long
exact sequence is an easy consequence of the first one, once one knows that
Z �→Z[1] is an equivalence of category. One then deduces the third long exact
sequence using Lemma 3.1.4.

The fact that the (U+)’s do generate the triangulated category SHS1

s (SmS)

easily follows from Lemma 3.1.4.
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It only remains to show that for any U ∈SmS the suspension spectrum
(U+) is compact. It is not hard to check first that the sets of homotopy clas-
ses π((U+),−) have the required property that the map

colimi∈Iπ((U+),Ei)→π((U+), colimIE•)

is a bijection, for any right filtering small category I and any functor
E•:I→SpS1

(SmS).
By Lemma 2.3.3 one can pick up a functorial fibrant resolution and

thus the natural transformation E• → (E•)f of functors I→ SpS1
(SmS)

is termwise a stable weak equivalence and moreover for each i ∈ I the
S1-spectrum (Ei)f is fibrant. Thus there is a canonical bijection

colimi∈I [(U+),Ei ]∼= colimi∈Iπ((U+), (Ei)f )

Thus if we set F := colimI(E•)f ), it is sufficient to show that the obvious
map

π((U+),F )→ [(U+),F ]

is bijective.
Unfortunately, in general, the S1-spectrum F = colimI(E•)f will not be

fibrant, though each of the (Ei)f is. And we can’t apply the principle of
homotopical algebra.

We will instead use a technic invented by Brown and Gersten [7] in the
Zariski topology and adapted to the Nisnevich topology in [31]:

DEFINITION 3.1.6 ([31]). (1) A distinguished square

W → V

↓ ↓
U → X

in SmS is a commutative square in which f :V→X is étale, U→X is
an open immersion, f −1(U)=W and f −1((X−U)red)→ (X−U)red is
an isomorphism of schemes. Observe that the morphisms U→X and
V→X form a Nisnevich covering of X. And, moreover, the Nisnevich
topology is generated by the coverings of this form [31, Proposition 1.4
p. 96].

(2) An S1-spectrum E is a B.G.-S1-spectrum if for any distinguished square

W → V

↓ ↓
U → X
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the square of S1-spectra

E(W)← E(V )

↑ ↑
E(U) ← E(X)

is homotopy cartesian.11

For instance any fibrant S1-spectrum is a B.G.-S1-spectrum, any left fil-
tering colimit of B.G.-S1-spectra is a B.G.-S1-spectrum as well.

Now one can easily deduce from [31] the following lemma which finishes
the proof of Proposition 3.1.1 because the above spectrum F is also a B.G.-
S1-spectrum:

LEMMA 3.1.7. For any B.G.-S1-spectrum E, any U ∈ SmS the canonical
map

π((U+),E)→ [(U+),E]

is bijective.
Proof. Indeed the technique of [31] establishes that for any U ∈SmS the

canonical morphism

E(U)→Ef (U)

is a stable weak equivalence. But then π((U+),E)=π0(E(U))→π0(Ef (U))=
π((U+),Ef )= [(U+),Ef ]∼= [(U+),E] is a bijection.

Remark 3.1.8. This can be generalized to presheaves of S1-spectra (on
SmS). Let E: (SmS)

op→, U �→E(U) be such a presheaf. One says it has the
B.G. property if it satisfies the obvious analogue of Definition 3.1.6. Then
the technics from [31] indeed yield the statement that for any U ∈SmS the
canonical morphism

E(U)→a(E)f (U)

is a stable weak equivalence, where a(E) denotes the associated sheaf of
S1-spectra.

11Or homotopy cocartesian because these notions coincide for spectra.
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3.2. EILENBERG–MAClANE SPECTRA AND THE POSTNIKOV TOWER

Recall from [31, p. 57] that for any simplicial sheaf X is functorialy defined
a tower of epimorphisms

{P n(X )}n�−1=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

...

↓
P n(X )

↓
P n−1(X )

↓
...

P−1(X )

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

such that for each point x the fiber at x of that tower is exactly the tower
of the simplicial set Xx as constructed in [24, p. 32].

If X is pointed then P−1(X )=∗ is the point but in general P−1(X ) is
the subsheaf of the point ∗ with fiber at x the empty set if Xx=∅ and the
point if Xx �=∅; this sheaf P−1(X ) should be rather denoted π−1(X ).

When X is locally fibrant, i.e. its fibers are Kan simplicial sets, each of
the morphism of this tower is a local fibration and this tower is called the
Postnikov tower of X . This is the case for instance when X is a fibrant sim-
plicial sheaf.

LEMMA 3.2.1. For any pointed simplicial sheaf X , any natural number
n�1, the canonical morphism

X→�1(P n+1(X ∧S1))

factors through X→P n(X ) and thus induces a morphism

P n(X )→�1(P n+1(X ∧S1))

Proof. This follows formally from the fact that P n(X )⊂cos kn(X ) is the
image of X , where cos kn is the right adjoint to the n-th skeleton functor
skn as well as the following easy fact:

skn+1(X ×�1)= (skn(X )×�1)
⋃

(skn+1(X )× sk0�
1)

which clearly implies the formula:

skn+1((X+)∧S1)= skn(X+)∧S1
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DEFINITION 3.2.2. (1) Let E be an S1-spectrum in SmS . For any integer
n∈Z we let

P n(E)

denote the S1-spectrum whose r-th term P n(E)r is the point ∗ if n+r �
−1 and is the pointed simplicial sheaf P n+r (Er) if n+ r �0, and whose
structure morphisms are induced by those of E and the Lemma above.

(2) For any S1-spectrum E we let

{E�n}n∈Z
denote the tower of S1-spectra in SmS , indexed by the integers, whose
n-term is E�n :=P n(Ef ). We call this tower the Postnikov tower of E.
For each n∈Z we will also denote by E�n the (homotopy) fiber of the
morphism Ef→E�n−1. We thus have for each n∈Z an exact triangle
in SHS1

s (SmS) of the form:

E�n→E→E�n−1→E�n[1]

We observe that for a fibrant S1-spectrum E the canonical morphism

P n(E)→E�n=P n(Ef )

is a stable weak equivalence. Also, it is clear by construction that
πi(E�n)=0 for i >n and that the obvious morphism

E→E�n

induces an isomorphism πi(E) = πi(E�n) for i � n. Thus the homotopy
fiber Kn(E) of the morphism E�n→ E�n−1 is an S1-spectrum with the
property:

πi(Kn(E))=
{

0 if i �=n

πn(E) if i=n

For an abelian sheaf M ∈ Ab(SmS) and an integer n recall that the
pointed simplicial sheaf K(M,n) (see [31, page 56] for instance) has only
one non-trivial homotopy sheaf which is the n-th and is canonically iso-
morphic to M. This is called the Eilenberg–MacLane space of type (M,n).
Using the Alexander–Whitney transformation (see [24]) one gets mor-
phisms of pointed simplicial sheaves

K(M,n)∧S1→K(M,n+1)
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which turn the collection of K(M,n)’s into an S1-spectrum, which we
denote by

H(M)

Proposition 1.26 of [31] readily implies that this S1-spectrum has the fol-
lowing property:

LEMMA 3.2.3. For any U ∈SmS , any integer n∈Z and any M ∈Ab(SmS),
then the canonical morphism:

Hn
Nis(U ;M)→ [(U+),H(M)[n]]

is an isomorphism. In particular, of course,

πi(H(M))=
{

0 if i �=0
M if i=0

EXAMPLE 3.2.4. If M is an abelian group, then the cohomology with
coefficients in the associated constant sheaf is trivial. For any X ∈ SmS ,
M(X) is the group of locally constant maps from X to M.

Thus [(X+)[n],HM[m]] = 0 unless n = m and then [(X+)[n],HM[n]] =
M(X).

Using Proposition 1.33 of [31], and what we have recalled, one gets:

LEMMA 3.2.5. Let E be an S1-spectrum whose homotopy sheaves πi(E) are
zero for i �=0. Then the canonical morphism (in SHS1

s (SmS))

E→H(π0(E))

is an isomorphism.

As an immediate consequence we get:

COROLLARY 3.2.6. Let E be an S1-spectrum and n∈Z any integer. Then
there is a canonical exact triangle in SHS1

s (SmS) of the form

H(πn(E))[n]→E�n→E�n−1→H(πn(E))[n+1]
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3.3. THE STANDARD t-STRUCTURE AND ITS HEART

DEFINITION 3.3.1. We let SHS1

s (SmS)�0 denote the full subcategory of
SHS1

s (SmS) consisting of (−1)-connected (or connective) S1-spectra, i.e. S1-
spectra E with the property that πi(E)=0 for all i <0.

We let SHS1

s (SmS)�0 denote the full subcategory of SHS1

s (SmS) consist-
ing of S1-spectra F with the property that πi(F )=0 for all i >0.

PROPOSITION 3.3.2. The pair (SHS1

s (SmS)�0,SHS1

s (SmS)�0) defines a
t-structure [5] on SHS1

s (SmS). It is non-degenerate in the sense that:

(1) ∩nSHS1

s (SmS)�0={0}
(2) ∩nSHS1

s (SmS)�0={0}
For any E ∈SHS1

s (SmS), the exact triangle of Definition 3.2.2:

E�n→E→E�n−1→E�n[1]

is exactly the one induced by the t-structure [5].
Moreover the morphisms:

hocolimnE�n→E and E→holimnE�n

are both isomorphisms in SHS1

s (SmS).
This t-structure on SHS1

s (SmS) is called the standard t-structure on
SHS1

s (SmS).
The functor π0:SHS1

s (SmS)→ Ab(SmS), E �→ π0(E) induces an equiva-
lence of abelian categories between the heart12 of the standard t-structure
and the category of abelian sheaves on SmS , whose inverse is the functor
H : Ab(SmS)→SHS1

s (SmS), M �→H(M).

This proposition follows rather clearly from what we have done so far
as well as the following two lemmas:

LEMMA 3.3.3. Let E be an S1-spectrum, n ∈ Z and U ∈ SmS of Krull
dimension d. Then for any i ∈Z the morphism

[(U+)[i],E]→ [(U+)[i],E�n]

is onto for n� i+d−1 and an isomorphism for n� i+d.
Proof. This is clearly implied by Corollary 1.41 of [31].

LEMMA 3.3.4. Let E be an S1-spectrum on SmS . The following conditions
are then equivalent:

12i.e. the intersection SHS1

s (SmS)�0∩SHS1

s (SmS)�0, which is abelian [5].
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(i) E ∈SHS1

s (SmS)�−1;
(ii) for any U ∈SmS and any n�0 the group [(U+)[n],E] vanishes.

The following conditions are also equivalent:

(i) E is (−1)-connected;
(ii) E is isomorphic in SHS1

s (SmS) to the telescope of a diagram:

∗=E0→·· ·→En→ . . .

with En the cone of a morphism of spectra

∨α((Xα)+)[nα−1]→En−1

where the α’s run in some set In, with Xα ∈SmS and nα �0.

Proof. This easily follows from the fact that SHS1

s (SmS) is generated (as
a triangulated category) by the (U+)’s 3.1.1, Proposition 3.1.1 4) and from
Lemma 3.1.4.

Remark 3.3.5. Using the previous results one easily sees that, when the
base S is irreducible, the functor SH→SHS1

s (SmS) of 2.3.2 is a fully faith-
ful embedding and preserves the standard t-structures. Indeed, by Example
3.2.4, [S0[n],HM[m]]=0 unless n=m and then [S0[n],HM[n]]=M for con-
stant abelian sheaf M. Then one concludes using Postnikov tower on the
target and skeletal filtration on the source for classical spectra.

4. Stable A
1-Homotopy Theory of S1-Spectra

4.1. A
1-LOCAL S1-SPECTRA AND STABLE A

1-WEAK EQUIVALENCES

Recall that for a simplicial sheaf X , X+ denotes the pointed simplicial
sheaf obtained from X by adding a disjoint base point.

DEFINITION 4.1.1. (1) An S1-spectrum E ∈ SpS1
(SmS) is called A

1-local
if and only if for any F ∈SpS1

(SmS), the projection F ∧ (A1
+)→F induces

an isomorphism of abelian groups:

[F,E]→ [F ∧ (A1
+),E]

We shall denote by SHS1

A1−loc
(SmS) the full subcategory of SHS1

s (SmS) con-
sisting of A

1-local S1-spectra.
(2) A morphism f :X→Y in SpS1

(SmS) is called a stable A
1-weak equiv-

alence if and only if for any A
1-local spectra E, the map:

[Y,E]→ [X,E]

is an isomorphism.
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(3) The stable A
1-homotopy category of S1-spectra is the one obtained

from SpS1
(SmS) by inverting the stable A

1-weak equivalences and is
denoted by SHS1

A1(SmS).

Observe that for any F ∈ SpS1
(SmS) the morphism F ∧ (A1

+)→ F is
a stable A

1-weak equivalence by definition. Also any stable weak equiva-
lence is a stable A

1-weak equivalence. Of course the category SHS1

A1(SmS)

can also be considered as obtained from SHS1

s (SmS) by inverting the sta-
ble A

1-weak equivalences. Observe also that for a given pointed simplicial
sheaf X , the functor SHS1

s (SmS)→SHS1

s (SmS), E �→E∧ (X ) preserves sta-
ble A

1-weak equivalences (use Lemma 2.3.8), and thus induces a functor
SHS1

A1(SmS)→SHS1

A1(SmS) still denoted by E �→E ∧ (X ). For instance the
shift functor on SHS1

s (SmS) induces a shift functor on SHS1

A1(SmS), denoted
by E �→E[1].

In the following lemma, we give several equivalent conditions for an
S1-spectrum to be A

1-local. When needed, we always consider the affine
line A

1 as pointed by its 0-section.

LEMMA 4.1.2. Let E be a S1-spectrum. Then the following conditions are
equivalent:

(i) E is A
1-local;

(ii) The obvious morphism E→E(A1
+) is a stable weak equivalence;

(iii) The functional object E(A1) is trivial;
(iv) For any U ∈SmS , any integer n∈Z the homomorphism

[(U+)[n],E]→ [((U ×A
1)+)[n],E]

is an isomorphism;
(v) For any U ∈SmS , any integer n∈Z, the “evaluation at 1” morphism

ev1: [(U+)[n],E(A1)]→ [(U+)[n],E]

is the zero map.

Proof. The equivalence (i)⇔ (ii) obvious in view of Lemma 2.3.8.
From the exact triangle

S0 :=∗+→A
1
+→A

1

(in which S0→A
1
+ maps the non-base point to 0) we get an exact triangle

E(A1)→E(A1
+)→E

which proves the equivalence (ii) ⇔ (iii) because the evaluation at 0,
E(A1

+)→E which appears is a left inverse to the morphism E→E(A1
+).
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The equivalence (ii)⇔(iv) clearly follows from the fact that the spectra
(U+) generate the triangulated category SHS1

s (SmS) 3.1.1.
Using this we see that (iii) is equivalent to:

(iii)’: For any U ∈ SmS , any integer n ∈N, the group [(U+)[n]∧A
1,E]

vanishes.
The implication (iii)′ ⇒ (v) is trivial (because the group [(U+)[n],E(A1)]

becomes trivial). Let’s prove the converse implication (v)⇒ (iii)′. Assume
(v) and fix U ∈ SmS and n ∈ Z. We want to show that any SHS1

s (SmS)-
morphism f : (U+)[n]∧A

1→E is trivial.
But for any morphism of S1-spectra

f :F ∧ (A1)→E

let f̃ :F ∧A
1→E(A1) be the adjoint of the composition

F ∧ (A1∧A
1)

IdF∧µ→ F ∧A
1 f→E

where µ: A1 ∧A
1→A

1 denote (the morphism of sheaves induced by) the
product of the ringed object A

1. Then the following diagram is commuta-
tive (in SpS1

(SmS)):

F ∧A
1 f̃→ E(A1)

|| ↓ ev1

F ∧A
1 f→ E

This fact (applied with F =�∞(U+)[n] clearly implies the claim.

Remark 4.1.3. Using the terminology of [31] we can also observe that a
fibrant S1-spectrum E is A

1-local if and only if:
(vi): each term En is an A

1-local simplicial sheaf.

Lemma 3.1.7 clearly implies:

LEMMA 4.1.4. Let E be any B.G.-S1-spectrum. Then it is A
1-local if and

only if it is A
1-invariant in the sense that for any U ∈SmS the canonical mor-

phism E(U)→E(U ×A
1) is a stable weak equivalence.

Moreover, in that case, for any U ∈SmS , any n∈Z the canonical map

πn(E(U))→ [(U+)[n],E]A1

is an isomorphism.

Remark 4.1.5. Together with V. Voevodsky, we studied in [31] the analo-
gous “unstable” notions in �opShv(SmS). A simplicial sheaf X is A

1-local
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if and only if any Y ∈�opShv(SmS), the projection Y ×A
1→Y induces a

bijection:

HomHs (SmS)(Y,X )→HomHs (SmS)(Y×A
1,X )

thus defining the full subcategory HA1(SmST ) ⊂ Hs(SmS) consisting of
A

1-local simplicial sheaves. A morphism f :X→Y of simplicial sheaves is
an A

1-weak equivalence if and only if for any A
1-local Z the map

HomHs (SmS)(Y,Z)→HomHs (SmS)(X ,Z)

is bijective. The category obtained from Hs(SmS) by formally inverting the
A

1-weak equivalences is called the A
1-homotopy category of SmS .

We proved there that the inclusion HA1(SmST )⊂Hs(SmS) admits a left
adjoint

Lunst
A1 :Hs(SmS)→HA1(SmST )

called the A
1-localization functor. Its existence has the formal consequence

that the functor Lunst
A1 induces an equivalence between that category and

HA1(SmST ). In the next section we do the same thing, in a slightly more
convenient way for us, for the stable homotopy category SHS1

s (SmS).

4.2. A
1-LOCALIZATION

THEOREM 4.2.1. The inclusion

SHS1

A1−loc
(SmS)⊂SHS1

s (SmS)

admits a left adjoint

LA1 :SHS1

s (SmS)→SHS1

A1−loc
(SmS)

As a consequence, a morphism f in SHS1

s (SmS) is a stable A
1-weak equiva-

lence if and only if LA1(f ) is an isomorphism (i.e. a stable weak equivalence
in SpS1

(SmS)).

Recall that SHS1

A1(SmS) is the category obtained from SHS1

s (SmS) by for-
mally inverting stable A

1-weak equivalences. For two S1-spectra E and F

we shall denote by

[E,F ]A1

the set of morphisms HomSHS1

A1 (SmS)
(E,F ).
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DEFINITION 4.2.2. Let E ∈SpS1
(SmS) and n∈Z. We set

πA
1

n (E) :=πn(LA1(E))∈Ab(SmS)

and call it the n-th A1-homotopy sheaf of E.

Of course, πA
1

n (E) is also the associated sheaf to X �→ [(X+)[n],E]A1 .
It is quite formal to deduce the following corollary from the theorem.

COROLLARY 4.2.3.
(1) The functor LA1 induces an equivalence of categories

LA1 :SHS1

A1(SmS)∼=SHS1

A1−loc
(SmS)

and the induced functor SHS1

A1(SmS)→ SHS1

s (SmS) is left adjoint to
SHS1

s (SmS)→SHS1

A1(SmS).
(2) The category SHS1

A1(SmS) admits a unique triangulated category
structure whose shift is E �→ E[1] and which turns the functors
SHS1

s (SmS) → SHS1

A1(SmS) and SHS1

A1(SmS) ∼= SHS1

A1−loc
(SmS) ⊂

SHS1

s (SmS) into exact functors. In particular the A
1-localization functor

SHS1

s (SmS)→SHS1

A1−loc
(SmS) preserves exact triangles.

(3) For two S1-spectra E and F , the group [E,F ]A1 can be identified with
[LA1(E),LA1(F )]= [E,LA1(F )].

Proof of the Theorem. In this proof we always consider the affine line
A

1 as pointed by the zero section 0:S→A
1. For any E ∈ SpS1

(SmS), let’s
denote by ev1:E(A1)→E the evaluation morphism at 1.

We first prove (1). Let E �→Ef be a fixed functorial fibrant resolution.
For any endofunctor F :SpS1

(SmS)→ SpS1
(SmS) we let Ff be the functor

E �→F(E)f .
Fix an S1-spectrum E. We define L(1)(E) as the cone of the obvious

morphism ev1:E(A1)
f → Ef . Let E→ L

(1)
f (E) be the obvious morphism.

Define by induction on n�1, the functor L(n) :=L
(1)
f ◦L(n−1)

f . We have nat-
ural morphisms L

(n−1)
f (E)→L

(n)
f (E) and we let L∞(E)=T eln∈NL

(n)
f (E) be

the colimit of this diagram.
We claim that the S1-spectrum L∞(E) is A

1-local and that the mor-
phism

E→L∞(E)

is a stable A
1-weak equivalence, which proves the theorem.

To do so, use (i)⇔ (iv) of Lemma 4.1.2 and Proposition 3.1.1. (4). This
is an analogue of the “small object argument” of Quillen [34] which uses
Proposition 3.1.1 (4).
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Moreover we observe that L
(n−1)
f (E)→ L

(n)
f (E) is always an A

1-weak
equivalence, proving that so is E→L∞(E). Indeed the fiber of this mor-
phism is stably weakly equivalent to (Ef )A

1
by construction; but the mor-

phism (Ef )A
1 ∧A

1→ (Ef )A
1

which is adjoint to the morphism (Ef )A
1→

(Ef )A
1∧A

1
(induced by the product µ: A1×A

1→A
1) is left inverse to the

morphism (Ef )A
1→ (Ef )A

1 ∧A
1 (induced by S0→A

1), proving that (Ef )A
1

is a direct factor of (Ef )A
1 ∧A

1 and thus that (Ef )A
1→∗ is a stable A

1-
weak equivalence. The morphism L

(n−1)
f (E)→L

(n)
f (E) is thus a stable A

1-
weak equivalence as well.

The exactness of E→L∞(E) is easy to check.

LEMMA 4.2.4.
(1) A wedge of A

1-local S1-spectra is still A
1-local.

(2) The A
1-localization of a wedge of S1-spectra is the wedge of the corre-

sponding A
1-localizations.

Proof. (1) is clear by Proposition 3.1.1. (2) follows from the easy fact
that a direct sum of stable A

1-weak equivalences is a stable A
1-weak equiv-

alence (map it to an A
1-local spectrum).

Remark 4.2.5. The lemma implies that the A
1-localization functor com-

mutes to countable telescopes as well. It is possible to deduce from that
fact a simplicial model category structure on SpS1

(SmS) in which weak
equivalences are stable A

1-weak equivalences and cofibrations are the same
as in the simplicial model structure.

Remark 4.2.6. As in Remark 3.1.8, Lemma 4.1.4 can be generalized to
presheaves of S1-spectra (on SmS). Let E: (SmS)

op→, U �→E(U) be such a
presheaf which has the B.G.-property and the A

1-invariance property. Then
for any U ∈SmS the canonical morphism

E(U)→LA1(a(E))(U)= [(U+), a(E)]A1

is a stable weak equivalence, where a(E) denotes the associated sheaf of
S1-spectra.

COROLLARY 4.2.7. The objects (U+), U ∈SmS are “small” in SHS1

A1(SmS)

in the sense that for any right filtering small category I and any functor
E•:I→SpS1

(SmS), the canonical homomorphism

colimi∈I [(U+),Ei ]A1→ [(U+), colimIE•]A1

is an isomorphism.
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Proof. Proposition 3.1.1 (4) implies that

colimi∈I [(U+),Ei ]A1∼= [(U+), colimILA1(E•)]

It is clear that the S1-spectrum colimILA1(E•) has the B.G.-property
and the A

1-invariance property, thus it is A
1-local by Lemma 4.1.4.

Now, filtering colimits of A
1-weak equivalences are A

1-weak equivalenc-
es by [31, Corollary 2.13 p. 73] and thus the morphism of S1-spectra
colimIE• → colimILA1(E•) is a stable A

1-weak equivalence to an A
1-

local S1-spectrum, it is thus an A
1-localization. Thus [(U+), colimIE•]A1 ∼=

[(U+), colimILA1(E•)], which finishes the proof.

We know describe our construction of the localization functor in a
slightly different way. Denote by C the quotient sheaf of pointed sets
A

1/(Spec(k)+) where the closed immersion Spec(k)+→A
1 maps the base

point to 0 and Spec(k) to 1. We thus get an exact triangle of S1-spectra

S0= (Spec(k)+)→ (A1)→ (C)→S0[1]

Set σ := (C)[−1] so that we have now an exact triangle of the form

(T ) σ→S0→ (A1)→σ [1]

For any S1-spectrum E set Eσ := (E(C))[1]; one has an exact triangle of the
form:

E(A1)→E→Eσ

obtained by mapping (T ) into E. Thus in fact, the S1-spectrum Eσ is
canonically isomorphic in SHS1

s (SmS) to L
(1)
f (E). Iterating this procedure,

for any integer m�0 we let σ∧m denote (C∧m)[−m] and we let Eσ∧m

denote
(E(C∧m))[m]. The map σ→S0 induces morphisms

Eσ∧(m−1)→Eσ∧m

and clearly Eσ∧m

is canonically isomorphic to L
(m)
f (E) in such a way

LA1(E) can be identified to the telescope of the diagram

E→Eσ→·· ·→Eσ∧m→ . . .

This description will be quite useful in the next section.

4.3. A VANISHING RESULT

LEMMA 4.3.1. ([41, 4.14]). Assume X∈SmS has Krull dimension d. Let n∈
Z and let E be an connective S1-spectrum. Then the group

[(X+),LA1(E)[n]]= [(X+),E[n]]A1

vanishes for n>d.
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Proof. By the construction we gave above of the A
1-localization functor

and Proposition 3.1.1 (4) the morphism

colimm[(X+),Eσ∧m

[n]]→ [(X+),LA1(E)[n]]

is an isomorphism. Thus it suffices to prove that for each m the group
[(X+),Eσ∧m

[n]] vanishes. It is clear that for any S1-spectrum F , the group
[F,Eσ∧m

] is canonically isomorphic to [F ∧ C∧m[−m],E]. Thus it suffices
to prove that the group [(X+)∧C∧m,E[n+m]] vanishes for n > d. Using
the Postnikov tower of E and the Lemma 3.3.3 we end up with proving
the vanishing of the groups [(X+)∧C∧m,H(M)[n]] for n > d +m for any
M ∈Ab(SmS). This is proven in Lemma 4.3.2 below.

LEMMA 4.3.2. Assume X∈SmS is of Krull dimension d. Let n∈Z and let
E be a connective S1-spectrum. Then the group

[(X+)∧C∧m,E[n]]

vanishes for n>d+m.
Proof. We prove by induction on m�0 that for any i ∈N the group

[(X+)∧C∧m∧ (A1)∧i ,E[n]]

is trivial for n>d+m+ i.
This is true for m = 0 because X × A

i is of Krull dimension d + i,
because the Nisnevich cohomological dimension of a scheme is less or
equal to its Krull dimension, because the S1-spectrum (X+)∧ (A1)∧i is a
direct factor of ((X×A

i)+) and because of Lemma 3.2.3.
Assume now the inductive hypothesis for m− 1 � 0. Let i ∈N and n >

d+m+ i. Using the triangle which defines C we get an exact sequence of
groups

[(X+)∧C∧(m−1)∧ (A1)∧i ,E[n−1]]→ [
(X+)∧C∧m∧ (A1)∧i ,E[n]

]

→ [(X+)∧C∧(m1)∧ (A1)∧(i+1),E[n]]

which easily implies the result by induction.

COROLLARY 4.3.3. Assume S = Speck is the spectrum of a field and let
X ∈ SmS be a 0-dimensional scheme. Let n < 0 be an integer and let E be
a (−1)-connected S1-spectrum on SmS . Then the group

[(X+)[n],LA1(E)]= [(X+),E[n]]A1=πA
1

n (E)(X)

vanishes. For instance

[S0[n],LA1(S0)]= [S0[n], S0]A1=πA
1

n (S0)(k)=0

The last equality is shown using the Postnikov tower of LA1(E).
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5. Base Change and Gluing

5.1. BASE CHANGE

Let f :S ′ →S be a morphism with S ′ irreducible, separated, noetherian of
finite Krull dimension.

We denote by SmS
′ the category SmS ′ of smooth finite type S ′-schemes

and by

f −1:SmS→SmS
′

the obvious functor (X → S) �→ (X ×S S ′). We endow SmS
′ with the

Nisnevich topology so that for any sheaf F ∈ Shv(SmS
′) the composition

F ◦f −1 is a sheaf on SmST . We denote by

f∗:Shv(SmS
′)→Shv(SmS)

the functor so obtained. It admits a left adjoint

f ∗:Shv(SmS)→Shv(SmS
′)

with the property that it maps the sheaf represented by X ∈ SmS , to the
sheaf f ∗(X) represented by f −1(X) ∈ SmS

′. This pair of adjoint functors
extends to a pair of adjoint functors

f∗:SpS1
(SmS

′)→SpS1
(SmS)

defined by the formula f∗(E)(U) :=E(f −1(U))∈ for the right adjoint and

f ∗:SpS1
(SmS)→SpS1

(SmS
′)

which maps E ∈SpS1
(SmS) to the S1-spectrum f ∗(E) in SmS

′ with n-term
f ∗(En) and structure morphisms defined using the fact that f ∗(En)∧S1=
f ∗(En)∧ f ∗(S1)∼= f ∗(En ∧ S1): this follows trivially from the fact that f ∗

does commute to sums. We observe in particular the formula f ∗((U+))=
(f −1(U)+) for U ∈SmS .

Base change with respect to smooth morphism. Assume now that the
morphism f :S ′→S is smooth. We denote by f!:SmS

′→SmS the composi-
tion by f . It is left adjoint to f −1:SmS→SmS

′. For any sheaf F on SmS ,
F ◦f! is a sheaf on SmS

′. The functor

Shv(SmS)→Shv(SmS
′),F �→F ◦f!

clearly commutes to colimits and its value on the sheaf X, with X ∈
SmS , is the sheaf represented by f −1(X). Thus this functor Shv(SmS)→
Shv(SmS

′),F �→F ◦f! is canonically isomorphic to

f ∗ =:Shv(SmS)→Shv(SmS
′)
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This new “explicit formula” for f ∗ shows that in that case f ∗ commutes to
all limits, and thus admits a left adjoint

f#:Shv(SmS
′)→Shv(SmS)

Moreover, one easily checks the property that f#(X′)=f!(X
′) and deduces

the “projection” formula for any F ∈Shv(SmS
′) and any X∈SmS

f#(F ×f −1(X))=f#(F )×X

which follows, as in [31, Proposition 1.23, p. 104], from the case of the rep-
resentable sheaves.

LEMMA 5.1.1.
(1) The functor f ∗:SpS1

(SmS)→SpS1
(SmS

′) admits a left adjoint denoted by

f#:SpS1
(SmS

′)→SpS1
(SmS)

which satisfies the following projection formula for any F ∈ SpS1
(SmS

′)
and X∈SmS

f#(F ∧ (f −1(X)+))=f#(F )∧ (X+)

(2) For any E ∈SpS1
(SmS), and any X∈SmS , the obvious morphism of S1-

spectra

f ∗(Hom•(X+,E))→Hom•(f
−1(X)+, f ∗(E))

is an isomorphism.

Proof. (1) Follows at once from the projection formula for sheaves of
sets above. (2) is an immediate consequence, by adjunction.

LEMMA 5.1.2. Let f :S ′ → S be an S-scheme which is a filtering limit of
a diagram {Sα}α of smooth S-schemes with affine transition morphisms [14,
8.2]. For each α denote by fα:Sα→S the smooth structural morphisms. Then

(1) For any X∈SmS and F ∈Shv(SmS) the map

colimαHomShv(SmSα)(f
∗
α (X), f ∗α (F ))→HomShv(SmS

′)(f
∗(X), f ∗(F ))

is a bijection. In particular, the functor f ∗:Shv(SmS)→ Shv(SmS
′) is

exact.

(2) For any pointed X ∈ SmS and any E ∈ SpS1
(SmS), the morphism of S1-

spectra in SmS
′

f ∗(Hom•(X,E))→Hom•(f
−1(X), f ∗E)

is an isomorphism.
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Proof. We freely use the results in [14, 8.2]. 1) We know that there is a
set I and an equalizer sequence (in Shv(SmS)) of the form

�(i,j)∈I 2Zi,j
→
→�i∈I Yi→F

with the Zi,j and the Yi in SmS . As f ∗ is a left adjoint we still have the
exact sequence (in Shv(SmS

′))

�(i,j)∈I 2f ∗Zi,j
→
→�i f

∗Yi→f ∗F

Given φ ∈ HomShv(SmS
′)(f

∗X,f ∗(F )), there exists a Nisnevich covering
{X�→X} (finitely many �’s) and morphisms φ�:X�→ Yi� lifting φ. More-
over one can find for each � a Nisnevich covering {X′�,�′µ→X�×X X�′ } and
morphisms X′�,�′,µ→Zi�,i�′ satisfying an obvious descent condition.

By [14, 8.2], there exists an α such that each φ�:X�→ Yi� is induced
by some φ�,α:X�,α→Y�,α and each morphism: X′�,�′,µ→Zi�,i�′ is induced by
some: X′�,�′,µ,α→Zi�,i�′ ,α (with obvious notations).

Moreover enlarging α if necessary, we may assume that {X�,α→Xα} is a
Nisnevich covering, {X′�,�′,µ,α→X�,α×Xα

X�′,α} is a Nisnevich covering, and
that the obvious descent condition is satisfied. As the sequence of sheaves
(on Sα)

�(i,j)∈I 2f ∗α Zi,j
→
→�i f

∗
α Yi→f ∗α F

is exact we get a section φα ∈f ∗α F (f ∗α (X)) which induces φ. Surjectivity is
proven. The Injectivity is proven in very much the same way and the details
are left to the reader.

Let x ∈X ∈ SmS
′, and let α such that x is induced by xα ∈Xα ∈ SmSα.

Using the bijection just established, we see that given and F ∈Shv(SmS) we
have a bijection (with obvious notations)

colimβ>αf
∗
β (F )xβ

∼=f ∗(F )x

which immediately implies that f ∗ is exact. Part (1) is proven.

Part (2) follows from (1) and some easy computations involving Lemma
5.1.1.

EXAMPLE 5.1.3. Let x∈X∈SmS . We let S ′ be the spectrum of the hensel-
ization Oh

X,x of the local ring OX,x and f :S ′→S be the obvious morphism.
Denote by Sα→S the system of Nisnevich neighborhoods of x, that is to
say étale morphisms fα:Sα→X such that f −1

α (x) has exactly one element
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with the same residue field as x. For any S1 -spectrum E in SmS then its
fiber Ex at x, that is to say the S1 spectrum (in S) given by

Ex := colimSα→SE(Sα)

can be identified, using the previous lemma, with the S1-spectrum

f ∗(E)(S ′)

5.2. DERIVED FUNCTORS OF BASE CHANGE

It follows from Lemma 5.1.2 that if f :S ′ →S satisfies the assumptions of
the Lemma the functor f ∗ is exact, and thus preserves (stable) weak equi-
valences. In fact we have an identification for E ∈SpS1

(SmS), n∈Z,

πn(f
∗E)=f ∗(πn(E))

In general, however, neither f∗:SpS1
(SmS

′)→SpS1
(SmS) nor f ∗:SpS1

(SmS)→
SpS1

(SmS
′) do preserve stable weak equivalences (nor stable A

1-weak equiva-
lences); see [31, p. 62] for a precise account in the case of simplicial sheaves.

For any S1-spectrum F in SmS ′ , we set Rf∗(F ) :=f∗(Ff ) (where as usual
(−)f means a chosen fibrant resolution functor on SpS1

(SmS
′)).

LEMMA 5.2.1.
(1) The functor Rf∗, SpS1

(SmS
′)→ SpS1

(SmS), E �→ Rf∗(E) maps stable
weak equivalences to stable weak equivalences. We still denote by

Rf∗:SHS1

s (SmS
′)→SHS1

s (SmS)

the induced functor. It is the right derived functor of f∗ in the sense of
Quillen [34, I.4].

(2) For any U ∈SmS , any n∈Z the canonical map
[
(f −1(U)+)[n],E

]
SHS1

s (SmS
′)→ [(U+)[n],Rf∗(E)]SHS1

s (SmS)

is an isomorphism.

Proof. Let U ∈SmS , n�0. Then

π((f −1(U)+)[n],Ef )SHS1
s (SmS

′)= [(f −1(U)+)[n],E]SHS1
s (SmS

′)

because Ef is fibrant. But observe that the S1-spectrum f∗(Ef ) is a
B.G.-S1-spectrum as it follows at once by adjunction and because f ∗(U) is the
sheaf represented by f −1(U). Thus π((U+)[n], f∗(Ef ))= [(U+)[n],Rf∗(E)], as
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well. To prove (2) in the case n� 0 we just observe that the adjunction induces
a bijection

π((U+)[n], f∗(Ef ))=π((f −1(U)+)[n],Ef )

But the case n < 0 follows easily by shifting E. Now (1) follows from (2)
because the (U+)’s generate the triangulated category SHS1

s (SmS).

COROLLARY 5.2.2. With the assumptions and notations above:

(1) given any family {Fα}α of S1-spectra on SmS
′, the morphism

∨αRf∗(Fα)→Rf∗(∨αFα)

is an isomorphism.
(2) The functor Rf∗ admits a left adjoint, denoted by Lf ∗, which is the left

derived functor of f ∗ in the sense of Quillen [34, I.4]. For any U ∈SmS ,
the obvious morphism

(f −1(U)+)→Lf ∗(U+)

is an isomorphism.

Proof. To show (1), it is sufficient to check that it induces an isomor-
phism when applying [(U+)[n],−] for any U ∈SmS , any n∈Z. But this fol-
lows from (2) of Lemma 5.2.1 by 3.1.1 (4).

The existence of the left adjoint in (2) is equivalent to proving that
for each S1-spectra E on SmS , the functor F �→ [E,Rf∗(F )]SHS1

s (SmS)
is

representable.13 That statement is true for E = (U+) by Lemma 5.2.1 (2).
But clearly the conclusion is stable under taking cones, arbitrary wedges,
and we conclude because the smallest subcategory of SHS1

s (SmS) satisfying
these properties and containing the (U+)’s is clearly SHS1

s (SmS) itself.

LEMMA 5.2.3.
(1) Let F ∈SpS1

(SmS
′) be an A

1-local spectrum. Then Rf∗(F ) is A
1-local.

(2) Let F ∈SpS1
(SmS

′) be an S1-spectrum. Then the canonical morphism

LA1(Rf∗(F ))→Rf∗(LA1(F ))

is an isomorphism. As a consequence, Rf∗ does preserve stable A
1-weak

equivalences and induces a functor denoted

RA
1
f∗:SHS1

A1(SmS
′)→SHS1

A1(SmS)

13Of the form F �→ [f ∗(E),F ]SHS1
s (SmS

′).
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(3) The functor Lf ∗:SHS1

s (SmS)→ SHS1

s (SmS
′) does preserve stable A

1-
weak equivalences and induces a functor denoted

LA1f ∗:SHS1

A1(SmS)→SHS1

A1(SmS
′)

which is left adjoint to RA
1
f∗.

Proof. (1) clearly follows from Lemma 5.2.1 (1). (2) follows from (1)
and the description of the localization functor LA1 we gave above, taking
into account the formula Rf∗(F A

1
)= (Rf∗(F ))A

1
(which is a consequence of

Lemma 5.2.1 (1)), and the fact that Rf∗ commutes to direct sums (and thus
to forming telescopes). (3) follows from (1) by adjunction.

We also mention the following:

LEMMA 5.2.4. For any morphism f :S ′→S and any integer n∈Z, the func-
tor

Lf ∗:SHS1

s (SmS)→SHS1

s (SmS
′)

maps n-connected S1-spectra to n-connected S1-spectra.
Proof. Indeed it is sufficient to treat the case n=−1. This follows clearly

from Lemma 3.3.4 and the fact that for X∈SmS , Lf ∗(X+)= (f −1(X)+).

Remark 5.2.5. In case f is a finite morphism, we can prove as in [31,
Propositions 1.27 & 2.12] that Rf∗=f∗. Thus in that case as well, the exact
functor Rf∗ =f∗ maps n-connected S1-spectra to n-connected S1-spectra.

Functoriality with respect to smooth morphisms. Assume now that f :S ′→
S is a smooth morphism. Then we already mentioned that f ∗ preserves sta-
ble weak equivalences and thus it is clear that

f ∗ =Lf ∗:SHS1

s (SmS)→SHS1

s (SmS
′)

LEMMA 5.2.6. With the previous assumptions and notations:

(1) the functor Lf ∗ =f ∗ admits a left adjoint, denoted by Lf#, which is the
left derived functor of f# in the sense of Quillen [34, I.4]. For any U ∈
SmS

′, the obvious morphism

(f#(U)+)→Lf#((U+))

is an isomorphism.
(2) If E ∈SpS1

(SmS) be a B.G.-spectrum (resp. A
1-local spectrum), then so

is f ∗(E).
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(3) Let E ∈SpS1
(SmS) be a fibrant spectrum. Then the canonical morphism

LA1(f ∗(F ))→f ∗(LA1(F ))

is an isomorphism.
(4) The functor Lf#:SHS1

s (SmS
′)→ SHS1

s (SmS) preserves stable A
1-weak

equivalences and the induced functor

Lf A
1

# :SHS1

A1(SmS
′)→SHS1

A1(SmS)

is left adjoint to LA1f ∗.

Proof. (1) The functor f ∗ being a left adjoint, it commutes to arbitrary
sums and thus we formally get as in Corollary 5.2.2 the existence of a left
adjoint Lf A

1

# . To prove the last part of the statement we first observe that
if E∈SpS1

(SmS) is fibrant, then f ∗(E) is a B.G.-spectrum in SmS
′: this fol-

lows easily from the fact that applying f! to a distinguished square over S ′

yields a distinguished square over S. This easily implies the statement.
(2, 3, 4) are proven in the same way as in Lemma 5.2.3. We observe here

that we already knew that f ∗ preserves stable A
1-weak equivalences.

COROLLARY 5.2.7. Let f :S ′→S be an S-scheme which is a filtering limit
of a diagram {Sα}α of smooth S-schemes with affine transition morphisms [14,
8.2]. For each α denote by fα:Sα→S the smooth structural morphisms.

(1) for any BG-S1-spectrum E then f ∗(E) is a BG-spectrum.
(2) For any X∈SmS and any E ∈SpS1

(SmS) the morphism

colimα[(f −1
α (X)+), f ∗α E]SHS1

(SmSα)
→ [(f −1(X)+), f ∗E]SHS1

s (SmS
′)

is an isomorphism.
(3) For any E∈SpS1

(SmS) any pointed X∈SmS , the canonical morphism (in
SpS1

(SmS
′))

f ∗(E(X))→ (f ∗(E))(f
−1X)

is an isomorphism. As a consequence, the morphism

f ∗(LA1(E))→LA1(f ∗(E))

is a stable weak equivalence, and in particular, if E is A
1-local so is f ∗E.

Proof. It is not hard to see, using again the results in [14, 8.2], that a
distinguished square in SmS

′ is the pull-back along one of the morphism
S ′ → Sα0 of a distinguished square defined on Sα0 . So replacing S by Sα0 ,
we may assume given a distinguished square in SmS . The fact that f ∗E is
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a B.G.-spectrum follows then from: Lemma 5.1.2 (2), the fact (by Lemma
5.2.6) that each f ∗α E is a B.G.-spectrum, that the pull back of a distin-
guished square by any morphism is a distinguished square and the fact that
a filtering colimit of homotopy cartesian squares of S1-spectra is still a ho-
motopy cartesian square of S1-spectra. This proves (1).

Part (2) is a consequence of (1) together the corresponding isomorphism
of S1-spectra of sections

f ∗(E)(f −1(X))= colimαf
∗
α (E)(f −1

α (X))

which follows from lemma 5.1.2 (1).
Point (3) follows easily from (1) and lemma 5.1.2 (2).

EXAMPLE 5.2.8. We keep the same assumptions and notations as in
5.1.3. Then the lemma above implies that the morphisms

π0(E(Oh
X,x))→ [S0, f ∗(E)]SHS1

s (SmS
′)

and

π0(LA1(E)(Oh
X,x))→ [S0, f ∗(E)]SHS1

A1 (SmS
′)

are isomorphisms. As a consequence the S1-spectrum LA1(E)x , fiber at x of
LA1(E), is isomorphic in the “usual” stable homotopy category of S1-spec-
tra to (LA1(f ∗E))(SpecOh

X,x).

5.3. THE GLUING THEOREM

Let j :U → S be an open immersion. We let SmSU denote the category
of smooth U -schemes. We let Shv(SmU) denote the corresponding cate-
gory of sheaves of sets in the Nisnevich topology. The restriction functor
j ∗:Shv(SmS)→Shv(SmU) has both a right adjoint j∗ and a left adjoint j#

and is thus exact. The functor j#:Shv(SmU)→ Shv(SmS) is a fully faith-
ful embedding which identifies Shv(SmU) with the category Shv(SmS)/U

of objects F ∈Shv(SmS) whose structure morphism F→∗ factors through
the sub-object ∗U =U ⊂S=∗∈SmS of ∗.

LEMMA 5.3.1.
(1) The functor

j#:Shv(SmU)→Shv(SmS)

is exact and in particular the induced functor on spectra

j#:SpS1
(SmU)→SpS1

(SmS)
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preserves stable weak equivalences and maps n-connected S1-spectra to n-
connected S1-spectra.

(2) The induced functor

j#=Lj#:SHS1

s (SmSU)→SHS1

s (SmS)

is a fully faithful embedding.

Proof. (1) is proven by computing the fibers for instance.
(2) Indeed, the natural transformation Id→ Lj ∗ ◦ Lj# = j ∗ ◦ j# is an

isomorphism. Thus [E,F ]SHS1
s (SmSU )

= [E,Lj ∗ ◦Lj#(F )]= [Lj#(E),Lj#(F )],
thus proving the first assertion.

Let now i:Z→ S be the complementary closed immersion of the open
immersion j :U → S (with the reduced induced structure on Z). We let
SmSZ := SmZ be the category of smooth Z-schemes and let Shv(SmZ)

denote the corresponding category of sheaves in the Nisnevich topology.
The functor i∗ which is exact [31, Prop. 1.27 p. 105]; as in [31, Prop.
2.12 p. 108] we deduce that i∗ preserves A1-weak equivalences and A

1-local
objects and thus in particular it also preserves the A

1-localization.
Given an S1-spectrum E ∈SpS1

(SmS), the composition

j#EU→E→ i∗i∗(E)

is the trivial morphism in SpS1
(SmS), so that we have a canonical mor-

phism of S1-spectra C(j#j ∗(E)→E)→ i∗i∗(E). For simplicity in the sequel
we will simply set EU := j ∗E.

The following lemma can be either deduced or directly proven using [31,
Theorem 2.21]:

LEMMA 5.3.2. For any S1-spectrum E on SmS , the morphism

C(j#EU→E )→ i∗LA1(Li∗(E))

is an A
1-weak equivalence. Thus there is a canonical exact triangle in

SHS1

s (SmS):

LA1

(
j#(EU)

)→LA1(E)→ i∗(LA1(Li∗(E))

Remark 5.3.3. As J. Ayoub pointed out to us, contrary to what we pre-
viously thought, in general if E is an A

1-local S1-spectrum on SmSU then
j#(E) is not A

1-local. For instance take E to be the Eilenberg–MacLane
spectrum H(Gm)|U over U . Then using the previous lemma we see that the
A

1-localization of j#E is the fiber of

HGm→ i∗HGm
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because the two spectra are clearly A
1-local. It is easy to check it is not

simplicially equivalent to j#(H(Gm)|U).

6. The A
1-Connectivity Theorems

6.1. THE A
1-CONNECTIVITY THEOREM OVER A FIELD

In this section, S is assumed to be the spectrum of the field k.

DEFINITION 6.1.1. (1) Let X be an A
1-local pointed simplicial sheaf on

SmS and let n∈N be an integer. We say that X is weakly n-connected if
and only if for any generic point η∈X∈SmS with residue field F the fiber
Xη=X (F ) is n-connected (compare [27, Definition 3.3.5]).

(2) Let E be an S1-spectrum on SmS and let n∈Z be an integer. We say
that E is weakly n-connected if and only if for any generic point η∈X∈SmS

with residue field F the fiber Eη=E(F) is an n-connected S1-spectrum.

Remark 6.1.2. Clearly any (−1)-connected S1-spectrum on SmS is weakly
(−1)-connected. If one assumes E is fibrant and A

1-local Remark 4.1.3
implies that each En is a fibrant A

1-local pointed simplicial sheaf. More-
over, the assumption that E is weakly (−1)-connected is equivalent to
requiring that En is weakly (n−1)-connected for each integer n∈N.

We will now prove that [27, Lemma 3.3.6] holds in a more general
context:

LEMMA 6.1.3. Let X be an A
1-local pointed simplicial sheaf on SmS and

n�0 an integer. Then the following conditions are equivalent:

(i) X is weakly n-connected;
(ii) X is n-connected.

The same proof carries over exactly the same way so that we end up
with proving the following generalization of [27, Lemma 3.3.7]:

LEMMA 6.1.4. Let X∈SmS be irreducible and let �∈X be an open dense
subscheme. Then the pointed simplicial sheaf

LA1(X/�)

is 0-connected.
Proof. [27, Lemma 3.3.7] gives exactly the statement when k is perfect

(the proof relies on the homotopy purity theorem [31] and the perfectness
of the base field). Thus we may assume that k is not perfect!
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Recall that by [31, Corollary 3.22 p. 94], for any simplicial sheaf of sets
X the morphism of sheaves

X0→π0(LA1(X ))

is an epimorphism.
In particular,

X→π0(LA1(X/�))

is an epimorphism. Thus it is sufficient to show that any point x∈X admits
an open neighborhood U such that π0(LA1(U/(�∩U)) is trivial; indeed by
functoriality then, U→π0(LA1(X/�)) is trivial.

Let Z⊂X denote the closed immersion of the complement of � (with
the reduced structure). As we assumed k is not perfect, it is thus infi-
nite and by Gabber’s presentation Lemma [13, Lemma 3.1] or more pre-
cisely [9, Theorem 3.1.1] any point x ∈X admits an open neighborhood
U and an étale morphism π :U→A

1
V , with V some open subscheme in

the affine space A
d−1, with d the dimension of X at x, such that π

induces a closed immersion ZU :=Z∩U→A
1
V , satisfying ZU =π−1(π(ZU))

and such that ZU → V is finite. One thus gets an isomorphism of Nis-
nevich sheaves U/(U −ZU)→A

1
V /(A1

V −ZU) and it suffices to check that
π0(LA1(A1

V /(A1
V −ZU))) is trivial.

We now follow [9]: because ZU→V is finite, ZU→P
1
V is proper, thus

still a closed immersion, and moreover it doesn’t meet the section at infinity
s∞:V→P

1
V . But now by Mayer–Vietoris excision, the morphism of sheaves

A
1
V /(A1

V −ZU)→P
1
V /(P1

V −ZU)

is an isomorphism. But as A
1
V → P

1
V /(P1

V − ZU) is onto and LA1(A1
V ) =

LA1(V ) is an isomorphism, the composition

V→A
1
V→π0(LA1(P1

V /(P1
V −ZU)))

is onto for any section V→A
1
V , for instance the zero section.

But in P
1
V the zero section is A

1-homotopic to the section at infinity
s∞:V→P

1. As s∞(V )⊂P
1
V −ZU we see that

V→π0(LA1(P1
V /(P1

V −ZU)))

is the trivial morphism, as required.

Remark 6.1.5. The analogue of the previous Lemma is wrong in gen-
eral over a base S which is not a field. The smallest counter-example is
obtained as follows: take X = S and i:Z ⊂ S a non-empty closed sub-
scheme of codimension d > 0. Then using Lemma 5.3.2 and the fact that
i∗(LA1(Li∗S0))= i∗(S0) one gets that LA1(S/S−Z)= i∗(S0), which is clearly
not 0-connected.
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Now we can easily prove:

LEMMA 6.1.6. Let E be an A
1-local S1-spectrum. Then the following con-

ditions are equivalent:

(i) E is weakly (−1)-connected;
(ii) E is (−1)-connected.

Proof. We may assume E to be fibrant and A
1-local; Remark 4.1.3

implies that each En is a fibrant A
1-local simplicial sheaf. Moreover, by

Remark 6.1.2 each En is weakly (n−1)-connected. Then Lemma 6.1.3 gives
us that each En is indeed (n− 1)-connected, so that E is (−1)-connected.

LEMMA 6.1.7. Let E be a (−1)-connected S1-spectrum. Then its A
1-local-

ization is weakly (−1)-connected.
Proof. Let η∈X∈SmS be a generic point of X with residue field F . By

Corollary 5.2.7, the fiber LA1(E)η, can be identified (up to isomorphism in
SH ) to the S1-spectrum of simplicial sets

LA1(f ∗(E))(Spec(F ))

where f :Spec(F )→Spec(k) is the obvious morphism. But clearly f ∗(E) is
still (−1)-connected. Then by Corollary 4.3.3, the groups

[(Spec(F )+)[n],LA1(f ∗(E))]=πn(LA1(f ∗(E))(Spec(F )))

vanish for n < 0. Thus LA1(f ∗(E))(Spec(F ))∼=LA1(E)η is (−1)-connected,
proving that LA1(E) is weakly (−1)-connected.

The Lemmas above imply our main result:

THEOREM 6.1.8. Let E be an (−1)-connected S1-spectrum on SmS . Then
its A

1-localization LA1(E) is (−1)-connected.

6.2. A
1-CONNECTIVITY AND STRICTLY A

1-INVARIANT SHEAVES

In this section now, S is again a general base scheme.

DEFINITION 6.2.1. A sheaf of abelian groups M ∈Ab(SmS) is said to be
strictly A

1-invariant if and only if for any X ∈ SmS and any integer n∈N

the obvious homomorphism

Hn
Nis(X;M)→Hn

Nis(X×A
1;M)
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is an isomorphism. We denote by AbA1(SmS)⊂Ab(SmS) the full subcategory
consisting of abelian sheaves which are strictly A

1-invariant.

The following justifies the introduction of the previous notion:

LEMMA 6.2.2. Let M ∈ Ab(SmS). Then the Eilenberg–MacLane S1-spec-
trum H(M) is A

1-local if and only if M is strictly A
1-invariant.

Proof. Assume H(M) is A
1-local. Lemma 4.1.2 (iv) and the identifica-

tion Hn
Nis(X;M)= [(X+),HM[n]] imply that for any X∈SmS and n∈Z, M

is strictly A
1-invariant.

Conversely, if M is strictly A
1-invariant, then we deduce that the homomor-

phism

[(X+),HM[n]]→ [(X+)∧ (A1
+),HM[n]]

is an isomorphism for all X ∈ SmS and all n ∈ Z, and we conclude by
Lemma 4.1.2 that HM is A

1-local.

EXAMPLE 6.2.3. Let M be an abelian group; then its associated con-
stant sheaf M on SmSNis is strictly A

1-invariant: we mentioned 3.2.4 that
H ∗(X;M) vanishes for ∗>0 and clearly X �→M(X) is a A

1-invariant sheaf.

EXAMPLE 6.2.4. Let M be a homotopy invariant sheaf with transfers on
the category Smk of smooth k-schemes in the sense of Voevodsky [40].
When k is perfect, one of the main results of [39] is that M is strictly A

1-
invariant.

EXAMPLE 6.2.5. Let f :S ′ → S be a smooth morphism (or a mor-
phism satisfying the assumption of Corollary 5.2.7). Then for any strictly
A

1-invariant sheaf M on S, the sheaf f ∗(M) on S ′ is strictly A
1-invariant.

This follows for instance from Corollary 5.2.7 and the fact that f ∗(HM)=
Hf ∗(M).

Consequence of the stable A
1-connectivity property.

LEMMA 6.2.6. Assume stable A
1-connectivity propertyholds over S. Let E

be an A
1-local S1-spectrum. Then its non-negative part E�0 is an A

1-local
S1-spectrum. As a consequence, for any integer n∈Z the triangle of S1-spec-
tra (in SHS1

s (SmS))

E�n→E→E�n−1

consists of A
1-local S1-spectra.
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Proof. Indeed, applying the A
1-localization functor yields

LA1(E�0)→LA1(E)∼=E

By assumption, LA1(E�0) is (−1)-connected. Thus by the property of the
standard t-structure (see Section 3), LA1(E�0) maps back to E�0 and E�0,
being a direct factor of LA1(E�0), is A

1-local. The rest of the statement eas-
ily follows.

THEOREM 6.2.7. Assume stable A
1-connectivity propertyholds on S. Let E

be an S1-spectrum over S, then the following properties are equivalent

(i) E is A
1-local;

(ii) Each of the S1-spectra E�n, n∈Z, is A
1-local;

(iii) the sheaves πn(E)∈Ab(SmS) are strictly A
1-invariant for each n∈Z.

Proof. We already know from Lemma 6.2.6 that (i)⇒(ii). Clearly, because
of the triangles

H(πn(E))[n]→E�n→E�n−1

we get (ii)⇒(iii). The implication (iii)⇒(i) easily follows from Lemmas
3.3.3, 4.1.2, 6.2.2.

Remark 6.2.8. If E ∈ Sp is an S1-spectrum in S, we see from the pre-
vious Theorem and Example 6.2.3 that E is A

1-local (when considered in
SpS1

(SmS)). We thus deduce from Remark 3.3.5 that the functor

SH→SHS1

A1(SmS),E �→E

is a fully faithful embedding when S is irreducible. This holds without any
assumption on S. In particular, the canonical morphism

Z→ [S0, S0]A1

is an isomorphism.

We can now prove the Lemma 5 of the introduction which we restate:

COROLLARY 6.2.9. Assume that the stable A
1-connectivity property holds

on S. Then:

(1) For any sheaf E of S1-spectra over S and any integer n∈Z, the sheaves

πA
1

n (E) :=πn(LA1(E))

are strictly A
1-invariant.
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(2) Let E: (SmS)
op→, U �→E(U) be a presheaf of S1-spectra over S which

has the B.G. property for distinguished squares (see 3.1.6 and 3.1.8, or
[31]) and the A

1-invariance property: for any U ∈ SmS , the morphism
E(U)→ E(U × A

1) is a stable weak equivalence. Then for any n ∈ Z,
the Nisnevich sheaf Hn(E) = π−n(E) associated to the presheaf U �→
En(U) :=π−n(E(U)) is a strictly A

1-invariant sheaf.

Proof. We already mentioned that for an S1-spectrum E the sheaf
πA

1

−n(E) is the associated Nisnevich sheaf to the presheaf U �→ [(U+),E[n]]A1 ;
according to Theorem 6.2.7 the statement becomes clear (the case of pres-
heaves uses Remark 4.2.6).

The homotopy t-structure.

DEFINITION 6.2.10. (1) For any S1-spectrum E and any integer n∈Z we
set

πA
1

n (E) :=πnLA1(E)∈AbA1(SmS)

(2) An S1-spectrum F is said to be A
1-non-positive if LA1(F ) ∈

SHS1

s (SmS)�0 that is to say if

πA
1

n (F )=0 for n>0

We denote by SHS1

A1(SmS)�0 ⊂ SHS1

A1(SmS) the full subcategory whose
objects are A

1-non-positive.
(3) We say that an S1-spectrum E is A

1-non-negative if LA1(E) ∈
SHS1

s (SmS)�0 that is to say if

πA
1

n (E)=0 for n<0

We denote SHS1

A1(SmS)�0⊂SHS1

A1(SmS) the full subcategory whose objects
are A

1-non-negative.

The results of Section 3 and the previous ones clearly imply the fol-
lowing Lemma, in which we set for E ∈ SpS1

(SmS) and n ∈ Z, EA
1

�n :=
(LA1(E))�n and EA

1

�n := (LA1(E))�n:

LEMMA 6.2.11. Assume stable A
1-connectivity propertyholds over S. The

pair (SHS1

A1(SmS)�0,SHS1

A1(SmS)�0) defines a t-structure [5] on SHS1

A1(SmS).
The functor

LA1 :SHS1

A1(SmS)→SHS1

s (SmS)



THE STABLE A
1-CONNECTIVITY THEOREMS 49

is exact with respect to the t-structures (the standard one on the right). For
any E ∈SpS1

(SmS), the morphisms:

hocolimn→−∞EA
1

�n→E and E→holimn→+∞EA
1

�n

are both isomorphisms in SHS1

A1(SmS).
For any U ∈ SmS of Krull dimension � d, any E ∈ SpS1

(SmS) the mor-
phism

[(U+),E]A1→ [(U+),E�n]A1

is onto for n�d−1 and an isomorphism for n�d.
The following conditions on an S1-spectrum F are equivalent:

(i) For any integer n>0, any U ∈SmS the group [(U+)[n],F ]A1 is trivial.
(ii) F ∈SHS1

A1(SmS)�0.

The t-structure on SHS1

A1(SmS) in the Lemma will be called the homoto-
py t-structure on SHS1

A1(SmS), provided of course the stable A
1-connectivity

propertyholds over S.

Remark 6.2.12. In fact, without any assumption on S, one may define
the subcategory SHS1

A1(SmS)�0 by the last condition of the previous Lemma.
One may then define the subcategory SHS1

A1(SmS)�0 by required that
E ∈ SHS1

A1(SmS)�0 if and only if for any F ∈ SHS1

A1(SmS)�0, one has
[E,F [−1]]A1=0. It can be shown a priori that these classes define a t-struc-
ture on SHS1

A1(SmS).

Assume again now that the stable A
1-connectivity propertyholds over S.

Recall that the heart of the t-structure is the intersection

SHS1

A1(SmS)�0∩SHS1

A1(SmS)�0

and that it is an abelian category by [5].
From Theorem 6.2.7 we see that πA

1

0 induces a functor

πA
1

0 :SHS1

A1(SmS)→AbA1(SmS)

Moreover by Example 6.2.3, we have the functor

H : AbA1(SmS)→SHS1

A1(SmS)

whose image is clearly contained in the heart SHS1

A1(SmS)�0∩SHS1

A1(SmS)�0.
The following Lemma is then rather clear from what we have done so far:
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LEMMA 6.2.13. Assume that the stable A
1-connectivity propertyholds over

S. The functors

πA
1

0 :SHS1

A1(SmS)�0∩SHS1

A1(SmS)�0→AbA1(SmS)

and

H : AbA1(SmS)→SHS1

A1(SmS)�0∩SHS1

A1(SmS)�0

are equivalences of categories inverse to each other. As a consequence the cat-
egory AbA1(SmS) is abelian, and the functor AbA1(SmS)→Ab(SmS) is an
exact full embedding and admits as left adjoint the functor

LA
1

0 : Ab(SmS)→AbA1(SmS),M �→πA
1

0 (HM)

Moreover, the functor

(AbA1(SmS))
2→AbA1(SmS)

(M,N) �→M⊗A1 N :=LA
1

0 (M⊗N)

defines a symmetric monoidal structure on AbA1(SmS).

Remark 6.2.14. The fact that the category AbA1(SmS) is abelian, and the
functor AbA1(SmS)→Ab(SmS) is an exact full embedding is not trivial a
priori. Indeed, this exactly means that if f :M→N is a morphism between
strictly A

1-invariant sheaves over S, the Kernel and Cokernel (computed in
the abelian category of sheaves) are both strictly A

1-invariant.

Remark 6.2.15. We do not know any example (see the computations in
[29]) of a sheaf M where the canonical morphism

M→LA
1

0 (M)

is not an epimorphism in the Zariski topology.

Remark 6.2.16. On can show that the symmetric monoidal structure on
AbA1(SmS) given in the Lemma is compatible to the symmetric monoidal
structure on SHS1

s (SmS) induced by the smash-product (E,F ) �→E∧F [18,
23]; we have the formula for (M,N)∈ (AbA1(SmS))

2

M⊗A1 N =πA
1

0 (HM ∧HN)
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6.3. BASE CHANGE AND STABLE A
1-CONNECTIVITY PROPERTY

LEMMA 6.3.1. The following conditions are equivalent on S:

(i) The stable A
1-connectivity propertyholds over S;

(ii) For any smooth S-scheme X, the A
1-localization of (X+) is (−1)-con-

nected.

Proof. Clearly (i) ⇒ (ii). Let’s prove the converse implication. Let E be
a (−1)-connected S1-spectrum over S. By Lemma 3.3.4, E is isomorphic in
SHS1

s (SmS) to the telescope of a diagram: ∗=E0→·· ·→En→ . . . with En

the cone of a morphism of spectra

∨α((Xα)+)[nα−1]→En−1

where the α’s run in some set In, with Xα ∈SmS and nα �0.
It suffices to prove that each LA1(En) is (−1)-connected. We have exact

triangles of the form

LA1(En−1)→LA1(En)→∨αLA1((Xα)+)[nα]

because the A
1-localization functor preserves wedges and exact triangles

(and thus telescopes); we conclude easily by induction on n and the
assumption.

LEMMA 6.3.2. (1) Assume that the stable A
1-connectivity propertyholds

over S. Then for any étale morphism f :S ′→S it holds over S ′.
(2) Assume that {Ui→S}i is a finite family of étale morphism which is a

Nisnevich covering of S. Then the stable A
1-connectivity propertyholds over

each of Ui ’s if and only if it holds over S.
(3) Assume f :S ′→S is a morphism which is a filtering limit of a diagram

{Sα}α of smooth S-schemes with affine transition morphisms [14, 8.2] and that
the stable A

1-connectivity propertyholds over each Sα’s, then it holds over S ′.

Proof. (1). By the previous Lemma it suffices to prove that the S1-spec-
trum LA1(X+) is (−1)-connected for any smooth S ′-scheme. It is is clear in
view of the assumption and of Lemmas 5.2.4 and 5.2.6 that LA1(f ∗(f#X)+)
is (−1)-connected. But because f is étale, the obvious morphism of smooth
schemes over S ′

X→f ∗(f#X)=X×S S ′

admits as retraction the étale morphism X′ :=X×S S ′→X (observe it is not
a morphism of S ′-schemes). Thus as a smooth S ′-scheme X′ can be written
X′′ �X. Then LA1(X+) being a summand in LA1(X′+) is (−1)-connected as
well.
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Now (2) follows from (1) and the fact that an S1-spectrum E over S is
(−1)-connected if and only if each f ∗i (E) is (−1)-connected over Ui .

Again by Lemma 6.3.1, it suffices to prove that the S1-spectrum
LA1(X+) is (−1)-connected for any smooth S ′-scheme. By standard results
from [14] we know there is an α and a smooth Sα-scheme Xα such that
X∼=Xα×Sα

S ′. We know easily conclude from 5.2.4 and 5.2.6.

COROLLARY 6.3.3. The following conditions are equivalent on S:

(i) The stable A
1-connectivity propertyholds over S;

(ii) The stable A
1-connectivity propertyholds over each local ring of points of S;

(iii) The stable A
1-connectivity propertyholds over each henselian local ring

of points of S.

Proof. The implications (i) ⇒ (ii) and (ii) ⇒ (iii) clearly follow from
Lemma 6.3.2. The implication (iii) ⇒ (i) follows from the fact that an
S1-spectrum E over S is (−1)-connected if and only if for each s ∈S, the
restriction of E to the local schemes Spec(Oh

S,s)→S is (−1)-connected, as
well as Corollary 5.2.7 (3).

LEMMA 6.3.4. Let f :S ′→S be a finite morphism. If the stable A
1-connec-

tivity propertyholds over S it holds over S ′.
Proof. By Lemma 5.2.3 and Remark 5.2.5, given a (−1)-connected S1-

spectrum E over S ′, f∗(E) is (−1)-connected and LA1(f∗(E))∼=f∗(LA1(E)).
The conclusion now follows from the following easy observation: given x∈
X∈SmS , the fiber f∗(E)(Spec(Oh

X,x)) is isomorphic to the (finite) wedge

∨yE(Spec(Oh
Y,y))

where Y = S ′ ×S Spec(Oh
X,x)), a finite Spec(Oh

X,x))-scheme which is thus a
finite disjoint union of henselian local rings (of smooth S ′-schemes) and y

runs over the finite set of (closed) points lying over x.

LEMMA 6.3.5. Assume that the stable A
1-connectivity propertyholds over

S. Then given any S1-spectrum E ∈ SpS1
(SmS), the following conditions are

equivalent:

(i) LA1(E) is (−1)-connected;
(ii) For any point x∈S the S1-spectrum LA1(Li∗xE) is (−1)-connected, where

κ(x) denotes the residue field of x and ix :Spec(κ)→ S the canonical
morphism.

Proof. The implication (i) ⇒ (ii) follows from Lemma 5.2.4 and Theo-
rem 6.1.8.
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To prove (ii) ⇒ (i) it suffices to prove that for each point s ∈ S the
restriction

LA1(E|Spec(OS,s ))
∼= (

LA1(E)
)|Spec(OS,s )

of LA1(E) to the local scheme Spec(OS,s) is (−1)-connected. We proceed
by induction on the Krull dimension d of Spec(OS,s). We let j :U →
Spec(OS,s) denote the complement of the closed point i:Spec(κ(s))→
Spec(OS,s). From Lemma 5.3.2, the following is an exact triangle of
S1-spectra over Spec(OS,s):

LA1(Lj#(LA1(E|U)))→LA1(E|Spec(OS,s ))→ i∗(LA1(Li∗xE))

We observe that the stable A
1-connectivity propertyholds over the local

scheme Spec(OS,s) and over its open subscheme U . The results now follows
quite easily because LA1(E|U) is (−1)-connected as we know the restriction
of LA1(E) to each local rings of U are of smaller dimension.

We conclude this section by discussing the following Conjecture made
by J. Ayoub, which may hopefully give a program to prove more cases of
the stable A

1-connectivity property:

CONJECTURE 6.3.6. (J. Ayoub) For any regular local scheme S, with
closed point i: s→S and open complement j :U ⊂S, and for any strictly A

1-
invariant sheaf M over SmU , one has:

(1) the sheaf j∗(M) on SmS is strictly A
1-invariant;

(2) the canonical morphism of sheaves

j∗(M)→ i∗(πA
1

0 (Li∗(H(j∗(M)))))

is an epimorphism;
(3) the canonical morphism in SHS1

A1(SmS)

H(j∗(M))→Rj∗(HM)∼=H(Rj∗(M))

is an isomorphism.

We observe that (3)⇒ (1) because Rj∗(HM) is A
1-local by construction.

We also have the following implications:

LEMMA 6.3.7. The stable A
1-connectivity propertyfor S implies points (1)

and (2) of the conjecture.
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Proof. The sheaf j∗(M) is clearly isomorphic to π0(Rj∗(HM)). As
Rj∗(HM) is A

1-local by construction, if the stable A
1-connectivity prop-

ertyholds over S, j∗(M) is a strictly A
1-invariant sheaf. Moreover, the glu-

ing Lemma 5.3.2, say the spectrum LA1(Lj#(HM)) is the homotopy fiber
of the morphism

Hj∗(M)→ i∗(LA1Li∗(H(j∗(M))))

But it is (−1)-connected by the stable A
1-connectivity propertyproperty on

S because Lj#(HM) is (−1)-connected. This fact then implies (2).

LEMMA 6.3.8. The previous conjecture for all local ring of a regular
scheme S implies the stable A

1-connectivity propertyfor S.
Proof. It suffices to prove the stable A

1-connectivity propertyover each
local ring of S and proceeding by induction on the dimension of these
rings we may assume S itself is local (regular) and that the stable A

1-
connectivity propertyholds over the open complement U ⊂S of the closed
point.

Given a (−1)-connected spectrum E over S, we have the exact triangle

LA1(Lj#(E|U))→LA1(E)→ i∗(LA1Li∗(E))

given by the gluing Lemma 5.3.2. The right hand side is (−1)-connected
because we know the stable A

1-connectivity propertyover the residue field
of S (and because i∗ is exact and Li∗ preserves (−1)-connected objects).
Thus it suffices to check that for a (−1)-connected A

1-local spectrum E

over U , LA1(Lj#(E)) is (−1)-connected over S.
Now from the stable A

1-connectivity propertyover U , we see that the
homotopy sheaves of E are strictly A

1-invariant sheavesover U . But Rj∗
commutes to homotopy inverse limit of towers so that Rj∗(E) is the ho-
motopy inverse limit of the tower {Rj∗(E�n)}n. Now assumption (3) implies
by induction on n (the number of stages in the Postnikov truncations)
that

πi(Rj∗(E�n))= j∗(πi(E�n))

and that moreover this sheaf is strictly A
1-invariant over S. Thus the tower

{Rj∗(E�n)}n is exactly the Postnikov tower of its homotopy inverse limit
Rj∗(E). This implies also that i∗(LA1Li∗(Rj∗(E))) is the homotopy inverse
limit of the tower of i∗(LA1Li∗(Rj∗(E�n))); this follows from the fact that
i∗ is exact and Li∗ preserves (−1)-connected objects which shows that the
homotopy sheaves in this tower stabilize. The gluing Lemma 5.3.2 thus
implies that the spectrum LA1(Lj#(E)) is the homotopy inverse limit of the
LA1(Lj#(E�n)) and that moreover the homotopy sheaves in that tower sta-
bilize.
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Now the gluing Lemma again and property (2) show that for any n the
fiber LA1(Lj#(H(πn(E)))) of

H(πn(E))→ i∗(LA1Li∗(H(πn(E))))

is (−1)-connected. Using this we get by induction that LA1(Lj#(E�n)) is
(−1)-connected and from the fact that the homotopy sheaves in the tower
{LA1(Lj#(E�n))}n stabilize we finally get the result.

6.4. PURE SHEAVES AND THE GERSTEN CONJECTURE

Let us start this last section with the following problem: given a dense open
subscheme U ⊂X of a smooth S-scheme X, is the S1-spectrum:

LA1(X/U)

0-connected? If so what is its connectivity? The reason for asking this ques-
tion comes from the homotopy purity Theorem of [31]. If U is the comple-
ment of a closed subscheme i:Z→X of codimension d >0, smooth over S,
then

LA1(X/U)∼=LA1(T h(ν(i)))

where T h(ν(i)) is the Thom space of the normal bundle ν(i) of the regu-
lar immersion i. This can be shown to be (d−1)-connected when the stable
A

1-connectivity propertyholds over S.

Here is the natural generalization of this fact:

THEOREM 6.4.1. Assume stable A
1-connectivity propertyholds over S. Let

X be a smooth S-scheme and U ⊂X an open subscheme such that the com-
plementary closed immersion Z→X is everywhere of codimension � d and
such that Z→ S is a universally equidimensional morphism (see [38] for
instance). Let X/(X−Z) denote the obvious quotient pointed sheaf of sets
in the Nisnevich topology on SmS and let (X/(X−Z)) denote its suspension
S1-spectrum. Then its A

1-localization

LA1(X/(X−Z))

is a (d − 1)-connected sheaf of S1-spectra on SmS . In other words the mor-
phism of (strictly A

1-invariant) abelian sheaves

πA
1

n ((X−Z)+)→πA
1

n (X+)

is an isomorphism for n�d−2 and an epimorphism for n=d−1.
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Remark 6.4.2. For d=0, this is exactly Theorem 6.1.8, because the quo-
tient X/∅ is indeed the pointed sheaf X+. The case d = 1 exactly means
that U is dense in X and the statement is that (X/U) is 0-connected as an
S1-spectrum; compare with Lemma 6.1.4.

Proof of the Theorem. By Lemma 6.3.5 and the assumption that Z is
universally equidimensional we clearly reduce to proving the theorem when
S=Spec(k) is the spectrum of the residue field of a point in S. The conclu-
sion follows now from the equivalences in Lemma 6.4.3 and from Lemma
6.4.4 below.

The following is rather easy to prove:

LEMMA 6.4.3. Let f :E→ F be a morphism S1-spectrum on SmS , and
denote by C(f ) its cone. The following conditions are equivalent

(1) The S1-spectrum LA1(C(f )) is (d−1)-connected.
(2) The morphism of (strictly A

1-invariant) abelian sheaves

πA
1

n (E)→πA
1

n (F )

is an isomorphism for n�d−2 and an epimorphism for n=d−1.
(3) For any strictly A

1-invariant sheaf M over SmS the homomorphism:

[F ;HM[n]]→ [E,HM[n]]

is an isomorphism for n�d−2 and a monomorphism for n=d−1.

The next Lemma is the crucial point in the proof of Theorem 6.4.1.

LEMMA 6.4.4. Let U ⊂X be an open subscheme of a smooth k-scheme X

such that the codimension of the closed complement X−U in X is at least d.
Then for any strictly A

1-invariant sheaf M on Smk the morphism

Hn
Nis(X;M)→Hn

Nis(U ;M)

is an isomorphism for n�d−2 and a monomorphism for n=d−1.
Proof. Assume that k is infinite. Then the cousin complex for X (see [9,

(1.3) p. 36]), U �→E
∗,q
1 (U ;M) defines a flasque resolution of the Zariski

sheaf Hq

Zar associated to U �→H
p

Nis(U ;M). Indeed if E denotes a fibrant
resolution of H(M), the functor (Smk)

op→Ab∗,X �→H ∗Nis(X;M) defines
a cohomology theory with substratum X �→E(X)∈ Sp in the sense of [9];
then one gets the result by Corollary 5.1.11 of loc. cit.. In particular on has

Hn
Zar(X,Hq

Zar)=Hn(E
∗,q
1 (X;M))
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where the right hand side is the n-th cohomology group of the Cousin
complex.

By Theorem 8.3.1 of loc. cit. the left hand side coincides with Hn
Nis(X;M)

and

Hn
Nis(X;M)=Hn

Nis(X;H0
Nis)=Hn(E

∗,0
1 (X;M))

Now the lemma follows from the long exact sequence in cohomology
associated to the epimorphism of (Cousin) complexes E

p+∗,∗
1 (X;M)→

E
p+∗,∗
1 (U ;M) whose kernel vanishes in dimension � d − 1 by the assump-

tion on X−U .
The case when k is finite, in fact perfect, can be easily deduced from the

purity theorem of [31]. See Remark 6.4.5 below.

Remark 6.4.5. As in Lemma 6.1.3 (see also [27]), when k is perfect field,
we can give a quite geometric proof of the previous Lemma. If Z denotes
the reduced closed subscheme X − U there is an increasing sequence of
reduced closed subschemes:

∅⊂FdimX⊂ . . . Fd+1 . . . Fd =Z

such that each k-scheme Fs − Fs+1 is smooth and Fs has codimension s

in X. By the homotopy purity Theorem of [31], the sheaf (X−Fs+1)/(X−
Fs) is A

1-weakly equivalent to the Thom space of a rank s � d vector
bundle on Fs . But it is easy to check that its Nisnevich cohomology with
coefficients in a strictly A

1-invariant sheaf M will vanish in degree �d−1.

The following result is a direct consequence of Theorem 6.4.1. We don’t
know any “direct” proof of it, in the spirit of the previous proof for fields.

COROLLARY 6.4.6. Assume stable A
1-connectivity propertyholds over S.

Let X be a smooth S-scheme and U ⊂X an open subscheme such that the
complementary closed immersion Z→X is everywhere of codimension � d

and such that Z→S is a universally equidimensional morphism. Then for any
strictly A

1-invariant sheaf M on SmS the morphism

Hn
Nis(X;M)→Hn

Nis(U ;M)

is an isomorphism for n�d−2 and a monomorphism for n=d−1.

Now we address the problem of comparing Zariski and Nisnevich coho-
mology. We first observe the following result:
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LEMMA 6.4.7. Assume S = Spec(k). Then for any strictly A
1-invariant

sheaf M on Smk and any X∈Smk the homomorphism

H ∗Zar(X;M)→H ∗Nis(X;M)

is an isomorphism.
Proof. For k infinite this is known by Theorem 8.3.1 of [9]. Over a finite

field k this follows from Lemma 6.4.8 below by reducing as in loc. cit. or
[35, Section 6] to the case of the infinite field k(X) of rational fractions.

Observe that in our argument, contrary to [9], we won’t use any transfer,
even over a finite field.

LEMMA 6.4.8. Assume S = Spec(k) is the spectrum of a perfect field k.
Then for any strictly A

1-invariant sheaf M on Smk and any U ∈Smk the ho-
momorphisms

H ∗Nis(U ;M)→H ∗Nis(Uk(X);M|k(X))

are monomorphisms.
Proof. By our general base change argument 5.2.7 we see that

H ∗Nis(Uk(X);M|k(X))

is the filtering colimit of the H ∗Nis(U × (A1−F);M), over the ordered set
of finite sets F of closed points in A

1. Thus it is sufficient to prove that
for any open subscheme � ⊂ A

1 any closed point x ∈ � the morphism
H ∗Nis(U ×�;M)→H ∗Nis(U × (�− {x});M) is injective (because of course
H ∗(U×A

1;M)=H ∗(U ;M)). For this, it is sufficient to show that the obvi-
ous morphism in SHS1

A1(SmS): ((�− {x})+)→ (�+) admits a right inverse
(so that (�+) is a direct summand of ((�−{x})+)). By the Mayer–Vietoris
triangle

((�−{x})+)→ (�+)→ (A1/(A1−{x}))→ (�−{x}+)[1]

it suffices to show that (A1/(A1−{x})→ (�−{x}+)[1] admits a left inverse.
But as the obvious composition (A1/(A1−{x})→ ((�−{x})+)[1]→ ((A1−
{x})+)[1] is easily checked to be the obvious morphism, we reduce to prov-
ing that (A1/(A1−{x}))→ ((A1−{x})+)[1] has a left inverse in SHS1

A1(SmS).
But there is always a rational point y �=x in A

1 (in a field 0 �=1), and this
easily constructs our splitting.

Over a general base, the question of whether or not for a strictly A
1-

invariant sheaf M on SmS and for any X∈SmS the homomorphism

H ∗Zar(X;M)→H ∗Nis(X;M)
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is an isomorphism is an open question. Now in the next definition, we
combine the two properties to get what we called pure sheaves:

DEFINITION 6.4.9. We will say that a sheaf of abelian groups on SmS in
the Nisnevich topology M is pure if:

(1) for any X∈SmS the morphism H ∗Zar(X;M)→H ∗Nis(X;M) is an isomor-
phism;

(2) for any X ∈ SmS , any open subscheme U ⊂X such that the comple-
mentary closed immersion Z→X is everywhere of codimension �d the
morphism

Hn
Nis(X;M)→Hn

Nis(U ;M)

is an isomorphism for n�d−2 and a monomorphism for n=d−1.

We have learned that Nisnevich had also considered that property.

EXAMPLE 6.4.10. For instance, if S is normal, any semi-abelian S-scheme
A→S defines a strictly A

1-invariant sheaf which is pure. This follows from
the standard properties of abelian schemes [12, Lemma 1] which imply they
are flasque sheaves and A

1-invariant.

Lemmas 6.4.4 and 6.4.7 clearly prove:

LEMMA 6.4.11. Assume S=Spec(k) is the spectrum of a field k. Then any
strictly A

1-invariant sheaf M on Smk is pure.

Observe that over a general base S, it is not true that any strictly A
1-

invariant sheaf on SmS is pure. Take for i:Z⊂S a non-empty closed sub-
scheme of codimension d > 0. Then the sheaf i∗Z is a strictly A

1-invariant
(flasque) sheaf on SmS , but it is not pure. It is not clear whether or not
a pure sheaf of abelian groups is automatically strictly A

1-invariant. Also,
it is not clear a priori whether the category of pure strictly A

1-invariant
sheavesis abelian or not.

Denote by SHS1

A1(SmS)pure ⊂ SHS1

A1(SmS) the full thick14 triangulated
subcategory generated by suspension S1-spectra (X+) of smooth projective
S-schemes. An object in SHS1

A1(SmS)pure will be called pure. We make the
following:

CONJECTURE 6.4.12. The A
1-homotopy sheaves of any pure S1-spectrum

are pure.

14Closed under arbitrary wedges, retracts, and of course cones and suspensions.
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Remark 6.4.13. If the conjecture is true, observe that the A
1-homology

sheaves of a pure spectrum E are pure as well. To prove this roughly,
observe that the A

1-homology sheaves of E are the A
1-homotopy sheaves

of the smash product HZ∧E, where HZ the Eilenberg–MacLane spectrum
associated to the constant sheaf Z. Now given any S1-spectrum F over S,
and any pure E, a “cellular" decomposition of F will prove that F ∧E is
still pure.

Assuming now S is regular examples of pure sheaves should be the
sheaves associated to the presheaves X �→H ∗et (X;M) of étale cohomology
with coefficients in a locally constant constructible torsion sheaf M on S

of torsion prime to each characteristic of the residue fields of S. But this
is not yet known unless S itself is smooth over some base field for instance.

Still assuming S is regular, the representability of algebraic K-theory
by the Grassmanian [31] would imply that the associated sheaves Kn to
the presheaves of Quillen’s K-groups (see Corollary 6) are pure. Also some
conjecture of the author predicts that KW can be constructed from smooth
projective S-schemes (the orthogonal Grassmanian) so that it would follow
that the sheaf W of Witt groups (see Corollary 6) is pure as well, at least
when 2 is invertible in S.

Finally the A
1-homotopy sheaves of the algebraic spheres (Gm)∧n, A

n−{0}
or (P1)∧n, should be pure over a general regular base scheme. Thus there should
exist some type of unramified Milnor K-theory (or Witt groups, etc...) over a
general regular base scheme S (with 2 invertible), as these can be obtained over
a field by A

1-homotopy sheaves of explicit cones of morphisms between alge-
braic spheres [29]. In general it seems that most of the interesting cohomology
theories are represented by pure spectra.

Pure sheaves and the Gersten conjecture. Let M be a sheaf of abelian
groups on SmS in the Nisnevich topology. Recall [8,9] that the coniveau
spectral sequence for X ∈ SmS , for the Nisnevich cohomology of X is a
cohomological spectral sequence of the form: E

p,q
r (X;M)⇒H

p+q

Nis (X;M),
and that moreover one can identify the E1-term with

E
p,q

1 (X;M)=⊕x∈X(p) Hp+q
x (X;M)

where X(p) is the set of points in X of codimension p and Hn
x (X;M)=

colimU Hn
Nis(U/(U −x∩U);M) where U runs over the open subsets which

contain x.
We observe that the following Lemma appears in [32]:

LEMMA 6.4.14. Let x ∈X∈SmS be any point, n be an integer and M be a
sheaf on SmS in the Nisnevich topology.
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(1) Then for n�2 there exists an isomorphism

Hn
x (X;M)∼=Hn−1(Spec(Oh

X,x)−{x};M)

and an exact sequence

0→H 0
x (X;M)→M(Spec(Oh

X,x))→M(Spec(Oh
X,x)−{x})→

H 1
x (X;M)→0

Thus in particular Hn
x (X;M)=0 if n>codim(x).

(2) If M satisfies condition (1) of Definition 6.4.9 then moreover, for n�2
there exists an isomorphism

Hn
x (X;M)∼=Hn−1(Spec(OX,x)−{x};M)

and an exact sequence

0→H 0
x (X;M)→M(Spec(OX,x))→M(Spec(OX,x)−{x})

→H 1
x (X;M)→0

Proof. (1) The isomorphism and the exact sequence are derived from a
base change argument, and the long exact sequence

· · ·→H ∗−1(Spec(Oh
X,x)−{x};M)→H ∗(Spec(Oh

X,x), Spec(Oh
X,x)−{x};M)

→H ∗(Spec(Oh
X,x);M)→ . . .

as well as the fact the cohomology of Spec(Oh
X,x) is trivial. Moreover as

dim(Spec(Oh
X,x)− {x})= codim(x)− 1, the second assertion follows from

the fact that Nisnevich cohomological dimension is less or equal to the
Krull dimension.

Part (2) is derived in the same way in the Zariski topology.

Thus for any M, the term E
p,q

1 (X;M) vanishes for q >0.
Assume now that M satisfies condition (2) of Definition 6.4.9. The term

E
p,q

1 (X;M) then, clearly, also vanishes for q <0; in that case, the coniveau
spectral sequence is concentrated on the line q=0 and produces an isomor-
phism between the cohomology of the line E

∗,0
1 (X;M), called the “Cousin

complex” [9], and the Nisnevich cohomology H ∗Nis(X;M). If moreover, M

satisfies condition (1) of Definition 6.4.9 this implies that for the localiza-
tion at a point of some X∈SmS this cousin complex is exact.

It is not difficult to summarize these ideas as follows:

COROLLARY 6.4.15. Let M be a sheaf on (SmS)Nis . Then the following
conditions are equivalent:



62 F. MOREL

(i) M is a pure sheaf of abelian groups;
(ii) For any x∈X∈SmS , Hn(OX,x;M)=0 if n>0 and Hn

x (X;M)=0 if n<

codim(x);
(iii) The Gersten conjecture holds for M and for any localization of a point

in SmS .

Remark 6.4.16. Using Lemma 6.4.14 Condition (ii) can be checked to be
equivalent to the following:

For any x ∈X∈SmS , Hn(OX,x;M)=0 if n>0, and

Hn(Spec(OX,x)−{x};M)=0

if 1�n<codim(x)−1 and

M(Spec(OX,x))→M(Spec(OX,x)−{x})

is injective if codim(x)>0 and surjective if codim(x)>1.

This corollary and the representability of algebraic K-theory by the infi-
nite Grassmanian over a regular base [31] shows that Conjectures 2 and
6.4.12 imply the Gersten conjecture in algebraic K-theory and should also
imply in much the same way the Gersten conjecture for sheaves of Witt
groups over a regular base in which 2 is invertible.

Brown–Gersten spectral sequences. Now let E be a presheaf of S1-spec-
tra on SmS which satisfies the B.G.-condition and the homotopy invari-
ance. Then for any X ∈ SmS one has also the Brown–Gersten spectral
sequence [7] with E2 term H

p

Nis(X;Hq(E)) and converging to Ep+q(X); one
can check it is exactly the one obtained by the A

1-Postnikov tower of E.
In general this spectral sequence won’t agree from E2 with the coniveau
spectral sequence for E∗(X). Even for instance in the case E =HM the
Eilenberg–MacLane spectrum of an arbitrary strictly A

1-invariant sheaf!
However, it is not very hard to check:

LEMMA 6.4.17. Assume all the stable A
1-homotopy sheaves of the sheaf of

spectra associated to E are pure. Then the coniveau spectral sequence agrees
from E2 with the spectral sequence given by the Postnikov tower.

When E =K represents Algebraic K-theory over a field, this is the well-
known Gersten-Quillen spectral sequence [33]. In the case E=KW represent
Balmer’s Witt groups over a field (of char �=2) as in [16], this spectral sequence
can be shown, using [3], to coincide with the one constructed in [4].
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Appendix A. Review of Quillen’s Homotopical Algebra

A.1. THE AXIOMS

DEFINITION A.1.1. ([34]) Let C be a category and i:X→Y and p:E→
B be morphisms in C. We say that i has the left lifting property (LLP for
short) with respect to p or, equivalently, that p has the right lifting prop-
erty (RLP for short) with respect to i if for any commutative square of the
form

X
f→ E

↓ i p ↓
Y

g→ B

there exists a morphism h:Y→E which keeps the diagram commutative,
i.e. such that p ◦h=g and h◦ i=f respectively.

DEFINITION A.1.2 ([34]). Let C be a category equipped with three clas-
ses of morphisms (W,C,F ) respectively called the weak equivalences, the
cofibrations and the fibrations. We say that (C,W,C,F ) is a model category
(or that (W,C,F ) is a model category structure on (C) if the following axi-
oms hold:

• MC1 C has all small limits and colimits
• MC2 If f and g are two composable morphisms and two of f , g or

g ◦f are weak equivalences, then so is the third
• MC3 If the morphism f is retract of g and g is a weak-equivalence, cofi-

bration or fibration then so is f
• MC4 Any fibration has the right lifting property with respect to trivial

cofibrations15 and any trivial fibration16 has the right lifting property with
respect to cofibrations
• MC5 Any morphism f can be functorialy (in f ) factorized as a com-

position p ◦ i where p is a fibration and i a trivial cofibration and as a
composition q ◦ j where q is a trivial fibration and j a cofibration.

Remark A.1.3. Indeed, the previous definition slightly differs from the
original one of Quillen: in MC1 Quillen only assumes the existence of all
finite limits and colimits and in MC5 Quillen only assumes the existence of
such factorizations but not the functoriality. It is now recognized that the
above axioms makes life easier.

15i.e. cofibrations which are also weak equivalences.
16i.e. a fibration which is also a weak equivalence.
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The associated homotopy category is the category C[W−1] obtained by
formally inverting W in C. The previous axioms indeed implies [34] that
this category is well defined.

A.2. SIMPLICIAL STRUCTURE

Let C be a category. We refer the reader to Quillen [34] for the notion of a
simplicial structure on C. Recall at least that this means that we are given
a functor

(C)op×C→C, (X,Y ) �→S(X,Y )

with identifications S0(X,Y )=HomC(X,Y ) together with a natural trans-
formation

S(X,Y )×S(Y,Z)→S(X,Z)

compatible with the composition in C and satisfying some axioms.

EXAMPLE A.2.1. If X and Y are simplicial sheaves, denote by S(X ,Y)

the simplicial set

n �→Hom�opShv(SmS)(X ×�n,Y)

This can be shown to induce a simplicial structure on �opShv(SmS). In
much the same way, for sheaves of S1-spectra E and F denote by S(E,F )

the simplicial set

n �→Hom
SpS1

(SmS)
(E∧ (�n

+),F )

Then this induces a simplicial structure on SpS1
(SmS). These simplicial

structures will be refereed to as the standard ones.

With such a simplicial structure fixed, we say that two morphisms
f :X→Y and g:X→Y are simplicially homotopic (with respect to the given
simplicial structure) if there is an h ∈ S1(X,Y ) such that d0(H)= g and
d1(H)=f . We denote by

π(X,Y )

the quotient of the set of morphism HomC(X,Y ) by the equivalence rela-
tion generated by the above simplicial homotopy relation. This set is of
course identical to the set π0(S(X,Y )) of connected components of the sim-
plicial set S(X,Y ).
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DEFINITION A.2.2. A simplicial model category is a model category
(C,W,C,F ) together with a simplicial structure which is compatible to the
model category structure in the sense that the following axiom holds:

• SM7 for any cofibration i:X→Y and any fibration E→B, the obvious
map of simplicial sets

S(Y,E)→S(X,E)×S(X,B) S(Y,B)

is a Kan fibration [24] which is moreover trivial if either i or p is.

A.3. QUILLEN’S PRINCIPLE OF THE HOMOTOPICAL ALGEBRA

DEFINITION A.3.1. In a model category (C,W,C,F ) an object X is
called cofibrant if the canonical morphism ∅→X from the initial object to
X is a cofibration, and an object Y is called fibrant if the canonical mor-
phism Y→∗ from Y to the final object is a fibration.

THEOREM A.3.2. ([34]) Given a simplicial model category (C,�•,W,C,F )

with associated homotopy category H then for pair (X,Y ) of a cofi-
brant object X and a fibrant object Y the natural map HomC(X,Y )→
HomH(X,Y ) induces a bijection

π(X,Y )∼=HomH(X,Y )

Thus we can compute morphisms in the homotopy category of a sim-
plicial model category as follows. Choose a (functorial) trivial fibration
Xc→X with Xc cofibrant (such an Xc is called a cofibrant resolution of
X). This is possible by the factorization axiom MC5. Then in the same
way choose a (functorial) trivial cofibration Y→Yf with Yf fibrant (such
a Yf is called a fibrant resolution of Y ) and then observe that we have the
following sequences of bijections

HomH(X,Y )∼=HomH(Xc, Y )∼=HomH(Xc, Yf )∼=π(Xc, Yf )

The first two bijections are completely formal, the last one is a particular
case of the previous theorem.
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